PC-lint/FlexeLint 9.0
Manual Excerpts

L. BASIC FACTS ettt ettt e b et b e st b e s et b e et e b et st e b et neen e ne e e 1
2. INTRODUGCTION ...ttt ettt st e st e e b et st eb e seeseeseseenseneerennas 2
2.1 ANEXAMPIE ..o e et en e e 2

2.2 A LINETON Gt ottt s e st st e et e s st e e enaeeseenaeeeens 3

2.3 Language DEfINITIONcooiiiiieieieee et sr e 4

3. GETTING STARTED WITH PC-LINT .ottt s 6
TN S (U o TSSOSO 6

3.2 CONFIQUIBLION ...ttt ettt se e e ettt b et se et er e e e 7

3.3 RUNNING the TESE PrOgramScccieieiieieiie sttt se s sn e se e e 8

3.4 Linting YOU PrOgraIMSccuoitirieeiirieiieieeieseeiessessesessessesses e ssss e esssseessessensessessessesnessens 11
3.4.1 Other File Extensions for C++ MOUIESoceieiiieiine e 11

3.4.2 Controlling the MESSAgEScoiiiiiiiieie et ereas 12

343 OPIONS ...ttt ettt ettt e e ee et ee e e se ekt bt eh e et s a e et er e eneaneeneas 12

3.4.4 Extending the Command LiNeccoociiiiiiiereie et 12

3.5 Integrating With Y Oour ENVIFONMENTccoiiiiirireeiee et s 13

3.6 PrOJECE FIES ..o e e e 14

3.7 DOS ANA OS/2 ...ttt e ettt e e nn e e nn s 14
3.7.1 Multiple CONfIQUIBLIONSccueeiiieeeieeeie sttt sr e sre e eneas 15

3.7.2 DOSHNS FIES ...t ettt et e sn e eneas 16

3.7.3 DOS EXIENAEr NOLEScviieiieeiiee ettt es e e sr e sne e eneas 18

4. THE COMMAND LINE ..ottt e st e st seeneas 20
4.1 INAIT€Ct (LINE) FIIES ..o e e e e 21

A.2 EXIT COUR ..ottt sttt sttt sttt ettt es e st e st e et e e en e es e saeene e s e e seeneeenee e 21

5. OPTIONS ...ttt et ettt et b e bbb e e bR se e s £ et ehes b et eb et et et e beneen e b e e 23
5.1 Rulesfor SPeCifying OPLIONSccccuiiieieieriese e s s eneas 23

5.2 Error INNibition OPLIONSooviiiiii et seeas 26
5.2.1 Meta Characters for -esym, -€file, -emacro, -efunc, -estring, -etype, -ecal 42

5.3 Sizeand AlIGNMENT OPLIONSoiueiiiiiiieie e e s eneas 46

5.4 VerDOSIY OPLIONSoeiuiieiieieiie sttt st sn e sr e sre e eneas 49

5.5 Flag OPLIONS ...ttt e e e b et e et en et en e en s 51

5.6 Message Presentation OPLIONSc.cceieeieireriereereee et se e sresseseesne s 80
5.6.1 Message HEIgNt OPLIONc.coueeieiiesieseese et st sr e enee e 80

5.6.2 Message Width OPLiONooiiieiieciee et 83

5.6.3 Message FOrmat OPLIONSccueeieiiieriireere ettt sre e e enee e 83

5.6.4 Appending TeXt tO IMESSAGESooerririeereeieereeieeteestee e eseereesreesee e e e sneeneeenee e 86

5.7 OtNEN OPLIONS ..ottt ettt s e st e e s e eseese e e ne e st enaeeseeeseesseeneesneaneas 87

5.8 Compiler AdapLationcoooeiieie et 121
5.8.1 MiCrOSOft KEYWOITSooveiieiiiiieeiie ettt 123

5.8.2 COMPIIEr COUESoveeeiieeeeee ettt st et sa e e e e e 124

5.8.3 Customization FACIHITIES ...coooeeeeeeeeeeeeee e 128

B5.8.4 ldentifier CharaClarSoooooeeeeeeeeeeeeee e, 137

5.8.5 PreproCcessor STALEMENTSccocoueiiiiiirieeere e s 137
5.8.6 IN-1iNeassembly COUEooiiiiiieec e e e 137
S.8.7 PraQMBS ...t 138
5.8.8 The General SOIULTONccciiiiiieiie et e 143
5.9 Self-Referencing OptioNS FIlESc.ooiiiiieieee e e 144
6. LIBRARIESottt e et h et bt ne e et sn e ene s 147
6.1 Library HEadEr FIlESooiiie ettt e s 147
6.2 Library MOUUIEScooiiiiieieie ettt s 151
6.3 Library ObjeCt MOAUIESccooiiiiiieiieeee et e e 152
6.4 Assembly Language MOQUIESccoiiiiiieieee e e 153
7. FAST HEADER PROCESSINGociiiiitiieiiiie ettt 155
7.1 Pre-COMPIEd HEAOEKSooueieiieeeie ettt e e 155
7.1.1 Introduction to pre-compiled NEAAESSccooiiiiieiie e 155
7.1.2 Designating the pre-compiled header ... 155
7.1.3 Monitoring pre-compiled NEATENSccouiiiieieece e 156
7.1.4The use Of MBKEFIIES ..o e 156

7.2 BYPASS HEAOENSoceeieieieeee ettt sttt e et sn e e e 157
7.2.1 Congtraints 0N Bypass HEAOEN'Scccoeiiieieiiiiecie et 160

8. LINT OBJECT MODULES ...ttt s 163
8.1 WRNELISBLOB? ...ttt sr e sr et e e et sn e sr e e 163
8.2 WY @re LOBS USEU? ..ottt ettt sttt sn e sn e e 163
8.3 ProduCing @L OB ..ot sr e eneas 165
8.4 -10bbase to reduCE 10D SIZESccoiiiie e 165
8.5 MBKEFIIES ...t e e 167
8.6 Library MOUUIESoooieiieieie ettt e e 168
8.7 OPLIONSTOr LOB'S ...ttt sttt st sr e sb et e e st sn e se e 169
8.8 LimitatioNS Of LOB'Sooiiiiiiie ittt e e e 169
9. STRONG TYPES ...ttt ettt e e et eb et b et es e et sr et sr e ne e 170
0.1 QUICK SEAM ..eeveeeeeeseieieeeeee ettt et e et e e esbeeseesse e e e s e enseeneeeseesrenneeas 170
0.2 What @re SIrONQG TYPES? ...ooeeeeeieee ettt sttt s sae e e et e esaesseesre e e e e ensesnee e 170
S G TS 1 (0] o TP PR PR TPR USRI 171
9.4 Multiplication and DiviSiON Of SIrONG TYPESccuvruereeiirieie e 175
9.4.1 DIMENSION (J0) 1ouvreneieiiesiieieieiees ettt st se e e e sree e e e e e e ennas 176
9.4.2 Dimensionally NeULral (JN)coeoeeerreeiieieerees et s 176
9.4.3 Anti-DImeNnSiONal (JA)ceeoeereeieeie i ieesees et 177
9.4.4 DIMENSIONAl ANAIYSISooiiieieeie ettt ettt se e e e e ennas 177
O.4.5 CONVEITIONS ...cuveitiieetieieestesseie st ese st eseese e ses e asesbess e ae s e seeae e e esbeanenseen e besnenneeneas 179
S G L 011= 0 < £ TSP 180
9.4.7 Migrating t0 DIMENSIONScocueeueriiriieereeeeesees e eie et sees e e e sreesee e e e eneas 182

S T | 0 (TSRS 183
0.6 TYPEHIEIArCNIES ..ottt se e e e enee e 186
9.6.1 TheNeed for aType HIerarchyccoooocirinieieee e 186
9.6.2 The Natural TYPe HIErarChyccooeeieiieciee e s e 186

9.6.3 Adding to the Natural HIerarchycccoocorerieieee e 188

9.6.4 Redtricting Down Assignments (-father) ... 189

9.6.5 Printing the Hierarchy Tree ..o e 190
9.7 HINtS 0N SrONG TYPING ...cveueeieiieeiinieetiee et sr e e ss e sr et sre e ne e e b e s e 191
9.8 Reference INFOrMELTONccoiiiiiieeeie e e s 193
9.9 Strong TYPES and PrOtOLYPEScoveiuieiirieeieieeie et sr e e e 194

10. VALUE TRACKING ..ottt sttt e s e nr s 195
10.1 INitialiZatioN TrACKINGooveeereiieieie sttt e eb e et sre s 195
10.2 VAlUE TIECKING ..eeeeeeieeiieieeie ettt st se et et ne e sn e sn e ene s 198

10.2.1 TREESSEIT FEMEAYoiviiviriieieeeeie sttt e b e e 201

10.2.2 Interfunction Value TraCKiNgccccoeeereeeriere e e e 203

10.2.3 Tracking Static Variablescoeoiiiiieeieeece e e e 213

11, SEMANTICS ..ottt e e e et ee et eb et es e e et sn et eneaneeneas 217
11.1 Function MImiCry (= f UNCE T ON) couiiieiiieieieeie e e e 217

11.1.1 SPECial FUNCLIONScouiiiiieieiie ettt e 217

11.1.2 FUNCHON TISHING ..ottt e s s 221
11.2 Semantic SPECITICAIONS (- SEM) .ooviieriiieiieie e s 227

11.2.1 POSSIDIE SEMENLICSeoeiieieiie et s 227

11.2.2 SeMantiC EXPrESSIONSccoiiirireeiieieeie s sr e sr e se e e e e 236

11.2.3 Notes on Semantic SPECITICAIONScccuevieeieiee e 240

12. MULTI-THREAD SUPPORT ...ttt sr e sr et ss e sn e sne e eneas 242
12,1 OVEIVIEW ..ttt ettt st h et a et h e e et ese e e eb et eh e e e ese e s et en e er e e 242
12.2 1dentifying TRrEAOSooiieie e e e 242
12.3 MULUBI EXCIUSION ...ttt e e e 244
12.4 Thread-Protected (TP) REJIONSccoiiieiiieeie ettt s 246
12.5 Constructor-triggered MuUteX 10CKINGcccooerieimirieieieee e e 247
12.6 FUNCLION POIMEEIS ..ot s 248
12.7 Thread Unfriendly FUNCLIONScocooiiiiiiiie e 249

12.7.1 Thread Unsafe FUNCtiONS (CategOry 1)cccooveiereerierienie e 249

12.7.2 Category 2 FUNCHIONSccueiiiriiiiieeiie et s 251

12.7.3 Category 3 FUNCLIONSccueiiiiiiiinieiie e e s s 252

12.7.4 HEAAE OPLIONSveiieeiieeeieseite ettt ettt sr e sr e s ne e e sr e ere s 252

12.7.5 DIreCtOry OPLIONSccueiviriieiieieiese ettt se e e b e e 253

12.7.6 Thread Unsafe ClassifiCalioNScoceerrrieieneeie e 253

12.7.7 Prioritiesin Thread UNSAfEtYcccoeeeviiiesiesenceese e 254

12.7.8 CaegOry 4 FUNCLIONScoveiiiiiieieeiiestiesees e seesees et sree st e e s st snassresneenneans 255

12.7.9 Category 5 FUNCLIONScceiiiiiieieciie sttt st e e nneens 256
12.8 Thread LOCal SLOTAQEccveeieeieeieeie ettt st sttt st s 256

1281 ThrEa0 ..o e e e 256

12.8.2 declpec(thread) ..o e 256
12.9 ALOMIC ACCESScoueiuieeeuie ittt ettt se e e se e st e se e sh b bt es e e e es b ne e sr e er e ene s 257

12.9.1 AtOMIC OPEIELIONSeoiveeeieieieeeieesieeteesteeseeseee st e s e esseeseesseesseeseeseenseensessesssesssens 257

12.9.2 ATOMIC TYPES ..ottt et e ettt sttt ne et e e este et eeseeese e e e e seeneesseesneeneens 258
12.10 Declarative MENOUAS ..o e 260

13. OTHER FEATURES ... oottt sttt eneas 263

13.1 Order Of EVAIUBLIONeee e e e e e e e e e e e e e enenenen e enenn e nnnnnnnnnnnnnn 263

13.2 FOrMat CRECKINGveueeiiieeiie sttt ettt e e sb e e 265
13.3 INdentation CRECKINGcccoueiirieriie et e e 265
13.4 CONSE CNECKING ...ttt e e b e e 268
13.5 VOlatile ChECKINGoiveiieiiieeie et e e e e 268
13.6 ProtOtyPe GENEIBLIONccceoviieiieieiie sttt se e e b e se e e 269
13.7 Exact Parameter MatChingccocoiiriiiciieceser e s 271
13.8 WEBK DEFINIAISeoieeiieieieceieeeeee sttt sttt en e sr et eneas 274
13.8.1 UNUSE HEAEN'S ...ttt e e 274
13.8.2 Removable from HEaEScoeiiiiiece e s 276
13.8.3 SIAIC-ADI@ ..o e 276
13.9 UNIX LINE OPLIONS ..ottt st sr e s 277
13.10 SEEIC INITIAIIZALIONccevieeeeieiie e s 278
13,11 SIZEOF SCAIAIS ..cveeeeeiie ettt ettt ne e st ne e e e e ennas 279
13.12 MISRA Standards Checkingcccoeroeeiriie e 280
13.13 StACK USAGE REPOIT ...ttt sttt e e 280
14. NON-STANDARD EXTENSIONSoooiiiiiiiiie et e s 285
14.1 MEMOTY MOUELS ...ttt se e sn e sr e 285
14.2 Additional RESEIVE WOITSccoiiiiiiieiieieeie st 286
15. PREPROCESSOR ...ttt sttt eie st eb st e ss et se e st es e e et sn e b sneanesneas 287
15.1 PreproCessor SYMDOISccccueiiieriii ettt sr e e sr e sre s 287
15.2 INCIUAE PrOCESSING ...cueiuiieeiieitiie sttt sttt sr e sr e e 288
15.2.1 INCLUDE Environment Variable ..o 289
15.3 ANSI/ISO Preprocessor FACIlITIEScucireieiieeiereee e 289
15.3.1 HIN@ANUH ...ttt e e e et e et sreesreeneeas 289
15.4 NON-Standard PreproCESSINGcoereeerieirrieieseeieeie et s ssese s e s sse e e seeenes 290
15,401 FBSSEIT ...ttt ettt er e ee e e e e e e e e n e e e nee e n e e e e eas 290
15.4.2 HC INCIUAR ...ttt sttt ettt e e et sneesreeneeas 290
15.4.3 FHBSIM .ottt et b e bt et e nr s 291
15.4.4 HAICHONAIY ...ooveiiieiieeeie ettt et ettt e sr et sr e er s 291
15.4.5 HENUASIM ..ot ettt e e 291
15.4.6 FHIMPOIT ...ttt e bt eb e e nr et sr e ee s 291
15.4.7 FUNBSSEIT ...ttt ettt et s st e e s e e e e nn e e e e nee e s nee s nneesnneeeas 292
15.4.8 HNCIUAE NEXL ...ttt st st e et sreesneeneens 292
15.5 User-Defined KEYWOITScccooieiiieieniiesiisieeseeeese e se et sre s e e 293
16. LIVING WITH LEINT ettt s sn e e e 294
16.1 AN EXampPle of @POlICYccooiiiiiieeii e e s 294
16.2 RECOMMENTEA SELUDoveeeiieieeie ettt sttt et sne e st ne e e eneas 296
16.3 Using Lint ObjeCt MOAUIESccuiiieieie e 297
3 A W (010 7= | o PR 208
17. PROGRAM INFORMATION ..ottt e sr et sn e sn e sne e eneas 299
17. 1 RECOTA FHEIAS ...ttt sr e st e e 300
1721 Thefil e category (Prefi Xfil e. t Xt) e 300
17.1.2 Thet ype category (Prefi Xt YPe. t Xt) oo 301

17.1.3 Thesynbol category (Prefi xsymbol . t Xt) i 301

17.1.4 The macr o category (Pr ef i XImMBCT 0. t X) woviieeiiereereriese e 302

17.2 OULPUL FOIMEE SETTNGSveeeeieieiie ettt et st se e sn e sr e s 302
17.3 Enabling and SUPPressing OULPULcoeeereeiereieeie e e 304
L7 A FIAG FIEIAS ..ot e e e e 305
L7 AL FIEFIAOS ..ottt er s 305
17.4.2 SYMBOl FIEOS ..ot e e e e 306

17. 4.3 MACTO FLAGS ..ottt ee e 306
17.4.4 OULPUL AT FIAOS ..ot e 307
17.5 OULPUL FITEEITNG ..ottt e nr e e 307
18. COMMON PROBLEMS ...t neeas 309
18.1 OptioN ASNO EfFECLeoieiieieiee e e e e 309
18.2 Order Of OPLiON PrOCESSING ...ccveeeeuerieeiereeriesreseereeresie s et sr e sre e srese e e ennesre s e 309
18.3 TOO MENY MESSAGESeerveirirueeieesreerresres e ese et ee e e sreesre s s sse s es e sreesresan e e eneennes 309
18.4 What isthe preproCessor dOING?ceooeiereiereieeie et see e seeenes 310
18.5 NULL NOt AEFINEAooveeieieeieeeeee ettt st s s 310
18.6 Error 123 USING MIN OF MEXceiveirerierteriierereeseeseseesseseessessessesressesseseesesssessesssseseesses 310
18.7 LONG _MIN MBEIO ...ttt st ettt st e see s eaee e e s e e sseessaeense e s e e e sneesnnas 311
18.8 Plain VanillaFUNCLIONSccoiieiieie ettt s st 311
18.9 Avoiding Lint Commentsin YOour COEcccooeieierineieire e 312
18.10 Strange COMPIIENSccueieiieriie e s 313
S 300 O PO PP OR USSP 313
18.12 What OptioNS @M | USING?ccueiiiiieiieieiie e se e e e sr e see s 313
18.13 How do | deal With SQL? ... 314
18.14 Torture TeStNG Y OUr COURooviiuiriirieeiieeeie st 314
19, MESSAGES ...t ettt r et nr e eneas 316
19.1 C SYNLBX ETTOIS ...ttt st sn e er e 320
RS A 1 1= 1 0= I R 335
19.3 FAtal EITOIS ..ottt e e r e sttt ena e st e st e e e e ennas 335
19.4 CWarniNg MESSAJEScccocueruirieriiriieieriesie et se s e se et sr et e e s e e e e e sr e sreenis 339
19.5 CINformational MESSAgEScccceevierirriiriiieieeseeee et se et sree e e e eneas 388
19.6 C EIECHVE NOLESoeiciieceie ettt ettt sn e e e e ennas 416
19.7 CH SYNEAX EFTONS ...ttt sr e e e e e nn e eneas 431
19.8 Additional INtEM@l EXTOIScccoiieiieiie ittt sre e eneas 444
19.9 CH+ WarNiNG MESSAGESeeeveerieeieeriesteestesseeseeseessessteeseessesssesssessesssesssessesssesssessesnses 444
19.10 CH+ INfOrmational MESSAESc.veiverrierriiieeieeeeieesiesteesee s e se et esae e sre s e e e e enees 462
19.11 CH+ EIECHVE NOLES ...ttt st s st eneas 482
20. WHAT'SINEW ettt et e et b et b e s e et sr e b e e e 493
20.1 MEOr NEW FEBIUINEScoeiiieieeie ettt ettt se e e e e e esae s e se e s e e neeneeenee e 493
20.2 New Error INhibition OPLIONSoceeiiiieee e s s 497
20.3 New VEerboSity OPLIONSccccoeeiuerieiierieeieeseeieseeiesseeseeesees e e e eseessesseeenees e ensesseees 498
20.4 NEeW Flag OPLIONScoiiiieiiieie et se e se e et es e e seesne e neenee s seeenes 498
20.5 New Message Presentation OPLIONSccoceeieeieiieeeesieereeseee e s seesse e e e s e 499
20.6 Additional Other OPLIONScceueiirieeeereee et e e e enee e 500
AO RV ®o 0 g o 1= g N o =T - 1 o] o O S 501
20.8 NEW MESSAGESooiieiiieiieieeieee et ie et e et re e et e e e s e e e steesabeaae e s e e e aseesaeeenseanneeensessaeeaas 502

21, BIBLIOGRAPHY ..ottt s sr e nn e e nn e nn e 508

5. OPTIONS

5.8.3 Customization Facilities

Thefollowing are useful for supporting anumber of featuresin avariety of compilers. With some
exceptions, they are used mostly to get PC-lint/FlexeLint to ignore some nonstandard constructs
accepted by some compilers.

@ Compilersfor embedded systems frequently use the @notation to specify the location of a
variable. A technique to handle thisis given in our manual in Section 5.8.2 Compiler
Codes in the description of - cwh. Users have encountered some difficulty with this
method when the location is given as a complex expression. We have for this reason
added direct support for the @feature, which consists of ignoring expressions to its right.
To enable this, just make sure you are NOT using - cwh. When we see a'@we then givea
warning (430), which you may suppresswith a- e430.

For example:
int *p @l ocation + 1;
Although warning 430 isissued, p isregarded asavalidly initialized pointer toi nt .

bit isatypethatisone bit wide. Thisneedsto be activated with the +r w(_bi t) option. It
was introduced to support some microcontroller cross-compilers that have a one-bit type.

_gobbl e isareserved word that needs to be activated via+r w(_gobbl e) . It causes the next
token to be gobbled; i.e., it and the next token areignored. Thisisintended to be used
with the - d option. Seeco- kcarm | nt for examples.

_ignore_init Thiskeyword when activated causes the initializer of a data declaration or the
body of afunction to be ignored.

Cross compilers for embedded systems frequently have declarations that associate
addresses with variables. For example, they may have the following declarations

OxFFFFO001,
OxFFFFO0002;

Port pa
Port pb

etc. ThetypePort is, of course, non-standard. The programmer may decide to define
Por t , for the purpose of linting, to be an unsi gned char by using the following option:

-d" Port=unsi gned char"”
(The quotes are necessary to get ablank to be accepted as part of the definition.)

However, PC-lint/FlexeLint gives awarning when it sees asmall data item being
initialized with such large values. The solution isto use the built-in reserved word

_ignore_init. It must beactivated using the +r woption. Then it isnormally used by
embedding it within a- d option. For the above example the appropriate options would
be:

+rw(_ignore_init)
-d"Port=_ignore_init unsigned char"

The keyword _i gnor e_i ni t istreated syntactically as a storage class (though for
maximum flexibility it does not have to be the ONLY storage class). Its effect isto cause
PC-lint/FlexeLint to ignore, as its name suggests, any initializer of any declaration in
which it is embedded.

Some compilersallow wrapping a C/C++ function prototype around assembly languagein
afashion similar to the following:

_asmint a(int n, int n
{ xeo 3, (nN)r ; ... }

Note there is a special keyword that introduces such afunction. This keyword may vary
across compilers. To get PC-lint/FlexeLint to ignore the function body, equate this
keywordwith _i gnore_i nit. E.g.

+rw(_ignore_init)
-d_asm= _ignore_init

_to_bracket s isareservedwordthat will causeit and theimmediately following) bracketed,
parenthesized or braced expression, if any, to be ignored. It needsto be activated with
+rw(_to_brackets). Itisusualy accompanied with a- d option. (For example, see
co-i ar. | nt onthedistribution media). For example, the option:

-dinterrupt=_to_brackets
+rw(_to_brackets)

will cause each of the following to be ignored.

i nterrupt(3)
interrupt[5, 5]
i nterrupt{x, x}

_to_eol When _to_eol isencounteredinaprogram (or more likely someidentifier defined to
be to_eol), theidentifier and all remaining information on thelineis skipped. That is,
information isignored to the End Of Line. E.g., suppose the following nonstandard
construct is valid for some compiler:

int f(int n) registers readonly (3, 4)
{

return n;

}

Then the user may use the following options so that the rest of the line following the first
") "isignored:

-dregi sters=_to_eol
+rw(_to_eol)

_to_sem isasuper gobbler that will cause PC-lint/FlexeLint to ignore this and every token up
to and including a semi-colon. It needs to be enabled with +r w(_t o_seni) and needsto
be equated using - d. For example, if keyword _pr agma begins a semicolon-terminated
clause, which you want PC-lint/FlexeLint to ignore, you would need two options:

-d_pragma=_to_sem
+rw(_to_sem)

_up_to_brackets isapotentia reserved word that will cause it and all tokens up to and
including the next bracketed (or braced parenthesized) expression to be ignored. For

example:
[11int +rw_up_to_brackets) activate reserved word
/[/1int -dasm=_up_to_brackets asmis now an _up_to_brackets
asm ("abc" : "def"); /[l "asm® ... ')’ is ignored
asmvol atile ("asm); /[l "asm® ... ')’ is ignored

In the above we almost could have defined asmtobea_t o_brackets. Theproblemis
that we also needed to ignore thevol at i | e following asmand so we required the use of
_up_to_brackets.

__typeof __ issimilarin spiritto si zeof except it returns the type of its expression rather
thanitssize. Sinceitisnot part of standard C or C++ the reserved word must be activated
with the option:

+rw(_ _typeof)

__typeof __ canbeuseful in macroswhere the exact type of an argument is not known.
For example:

#define SWAP(a,b) { __typeof (a) x = a;, a="b; b =x; }

will serveto swap the values of a and b. Some compilers not only support the
__typeof _ facility but they write their headersin termsof it. For example,

typedef _ typeof (sizeof(0)) size t;

assuresthat si ze_t will not be out of synch with the built-in type.

-a#tpredi cat e(t oken-sequence)
assertsthe truth of #pr edi cat e for thegivent oken- sequence. Thisisto support the
Unix System V Release 4 #assert facility. For example:

-a#machi ne(pdpll)

makes the predicate #nachi ne(pdpl11) true. See aso Section 15.4 Non-Standard
Preprocessing.

+/-conpiler(flagl[,flag2 ..]) Thisoption alows the programmer to specify flags that
describe compiler-specific behavior. As of thiswriting this option takes the following

flags:

base_op (OFF by default) -- This flag changes the meaning of the digraph token ": >".
Thisflag causes™: >" to be interpreted as an operator whose L HS represents a segment
and whose RHS represents an offset within that segment. This usage was introduced
by an earlier version of the Microsoft C compiler and was useful to support segmented
architectures then in popular use. Since the introduction of 32 bit compilers this has
become less frequently used. For example,

+conpi l er(base_op)

enables thismeaning of ": >".

Note: According to the C99 and C++ Standards, this token isa synonym for "] "
making this older interpretation really obsolete.

std_al t _keywor ds (OFF by default) -- Enables C++ standard alternative keywords
(e.g., "and" isasynonym for "&&"). The standard keysinclude: and, bi t or, or,
xor, conpl , bitand,and_eq, or _eq, xor _eq, not, not _eq. For example,
+conpi ler(std _alt_keywords)

enables standard alternative keywords.

st d_di gr aphs (OFF by default) -- Enables the interpretation of the C99/C++ digraph
tokens"<: " and": >". For example,

+conpi l er(std_di graphs)
enables the standard meaning of these two digraphs.

Thisis off by default because the following code, although technically ill-formed, is
often permitted by default by most compilers:

struct A{};
template< class T > struct B{};

:B<t:A> z; /| syntax error: equivalent to " :: B[: A>2z ;"

(Note: since this kind of thing can't happen with the alternative digraphs "<% and
"o", they are always enabled.)

-dnane{defini ti on} isanalternativeto-dnanme=definition.
-dnane{defi ni ti on} hastheadvantage that blanks may be embedded inthe definition.
Now itstrue that you could use - d" nane=def i ni ti on" and so enclose blanks in that
fashion but there are certain conditions, especialy compiler generated macro definitions
where the use of quotation marks are not suitable.

One such condition is output produced by the scavenger whose purpose isto extract pre-
defined macro definitions from an unwitting compiler. See- scavenge for details.

-dnane() =Repl acenent
-dnane(identifier-1list)=Repl acenent
To induce PC-lint/FlexeLint to ignore or reinterpret a function-like sequenceit is only
necessary to #def i ne asuitable function-like macro. However, thiswould require
modifying source code (or use of the - header option) and is hence not as convenient as
using this option. For example, if your compiler supports

char _varying(n)

as atype and you want to get PC-lint/FlexeLint to interpret thisas char * you can use
-dchar _varyi ng()=char*

As another example:

[11int -dal pha(x,y)=((x+y)/Xx)
i nt n=al pha (2, 10);

will initialize n to 6. The above - dal pha... option is equivalent to:
#define al pha(x,y) ((x_y)/x)

In the no parameter case, the functional expression can have any number of arguments.
For example; in the following code both asn() expressions are ignored even though they
have a different number of arguments.

/[11int -dasm()=

void f()

{ asm("Move a, 2", "Add a, b");
asnm("Jnp. x");

}

Aswith the normal (non-functional version of the - d option the +d variant of the option
sets up amacro that cannot be redefined.

- #dname=Repl acenent
Thisisyet another variation on the global define facility. It affectsonly #i ncl ude lines
and isintended to support the VAX-11 C includes. For example:

#i ncl ude time

issupported by a- #dt i me=Fi | enane option and does not affect any other uses of the
ti me identifier.

-over | oad(X) will set flags, which can affect function overload resolution. This optionis
highly technical but may be required to resolve some very subtle overload resolution
incompatibilities among different compilers. X is ahexadecimal number (without the
leading '0x"). For example, -over | oad(5) setsbits1and 4. The bits have the following
meaning.

1 Memory model counts more than ANSI/ISO qualification. For example, if thisflagis
set int n; f(&n); choosesvoid f(int const *) overvoid f(int far *)
becausef ar 'outweighs the const .

2 Memory model plus ANSI/ISO qualification exceeds either alone. For example, if
thisflagisset int n; f(&n); choosesvoid f(int const *) overvoid
f(int const far *) ratherthan regard the call as ambiguous.

4 Memory model has significance for references. For example, if thisflagisset, i nt
n; f(n); choosesvoid f(int & overf(int far &) becausethefar has
significance with references.

8 Memory model ignored when declaring oper at or del et e. With thisflag off (the
default) it is possible to distinguish, for example, between the following two
declarations:

voi d operator delete(void *);
voi d operator delete(void far *);

The defaultis- over | oad(7).

The compiler selection flags for Microsoft (- cnsc) and Borland (- ct c) automatically
adjust this set of flags (to 7 and 2 respectively).

Memory model differences are actual not nominal. For example, char far * isnot
considered different from char * in the large memory model (- nL). Memory model
differences only relate to pointer sizes or the implied pointer of areference. For example,
passingafar int toanint requiresno conversion.

-plus(char) identifieschar asan alternate'+' character used for options. If it isdifficult to
use the '+' character on the command line you may use an aternate character specified by
thisoption. E.g., - pl us(&) .

-scavenge(filenane-pattern|[,..])

-scavenge(clean, fil enane)
The purpose of this option is to automatically find acompilers built-in macros. It
completely changes the character of Lint from static analyzer to ascavenger of macros (or
cleanup facility depending on the sub-option).

Users of retargetable and embedded compilers may find difficulty in configuring Lint to
parse compiler-provided and 3rd-party headers correctly. The main reason is that such
compilers tend to make extensive use of pre-defined macros (that is, macros for which no
definition exists in any header file). To make matters worse, these compilers do not
always provide away to dump alist of macro definitions. For example, the GCC compiler
provides the pair of options"- E - dM" which will dump the macros that are pre-defined
into afile, in aform that can be used directly by Lint. Thisfilecanbecitedina- header
option.

For any given compiler, you can get alist of macro definitions by using the four-step
process below:

The option has two modes. Thefirst is of the form:
-scavenge(filenanme-pattern[,..])

and the second is of the form:
-scavenge(cl ean,fil enane)

The first mode is for generating and the second mode is for cleaning up. Here are the
steps.

1) Tell Lint where to look for headers by providing aset of - i options (or set the
INCLUDE environment variable). The directories named by these options should be
those that the compiler searches by default (e.g. Standard library headers). For this
example, assume we have placed such aset of - i optionsin thefile"i ncl ude. | nt"

2) Run:
lint include.lnt -scavenge(*.h) >mac.c
The actual command name varies according to the system. C++ users will probably want

touseafi | enane- pattern of "*" rather than"*. h" and an extension of ". cpp" rather
than". c"

For each unique identifier found in any of the files matching the argument(s) of the
options - scavenge you will abtain in the output a 3-line sequence of the form:

#i fdef nane
- dnane{ nane}
#endi f

where nane isthe name of the identifier. Thus, for example, you will probably see
(among thousands of other 3-line sequences) the following:

#i fdef _ cpl usplus
-d__cpl uspl us{cpl uspl us}
#endi f

Thisisnot valid C or C++ but it can be passed through your compiler’s preprocessor. |If
you were to use mac. ¢ as shown above then the compiler will ignore this sequence since
thesymbol __ cpl uspl us isnot defined for C. However if you were to have used

mac. cpp then the compiler’s preprocessor will probably produce as outpuit:

-d__cplusplus {1}

because for most C++ compilers __cpl uspl us isdefinedtobe 1 andd__cpl uspl us is
simply not defined.

3) Run "nmac. c" through your compiler’s preprocessor and capture the output in afile
which you should designate asa”. | nt " file. We arbitrarily pick "nac. | nt " here. For
example, with MSV C7, this means running:

cl [normal conpiler options] /EP mac.c >mac. | nt
Now nmac. | nt contains a complete set of all pre-defined macros used in the compiler’s
headersbut will, in all likelihood, contain numerous blank lines. These can be cleaned up
by using the scavengein 'cl ean’ mode.
4) run:

lint -scavenge(cl ean, mac. | nt)

In cl ean mode, the scavenge option will open the file for reading, save the non-vacuous
lines, closethe file, open it up for writing and dump out the new contents.

Note: we are using Microsoft here as an example of how you might retrieve pre-processed
output. It isnot normally necessary to employ the scavenge option when using the
Microsoft compiler as the necessary macros have already been extracted and placed in
various co- nsc*. | nt files.

Note: Whenever your build options change you may want to repeat steps 3 and 4.

-tenpl ate(X) setthetemplateflagsto X

++tenpl at e(X) OR X into the template flags

--tenpl ate(X) AND ~Xinto thetemplate flagswhere X isahexadecimal constant specifying
flags. Thisalowsfor fine-tuning of the template processing mechanism. Current flags
areasfollows:

1

80

100

200

aggressively process template base classes. Normally, base classes of class
templates need not be processed until instantiation time. For some libraries, notably
STL, base classes need to be aggressively processed because they supply names
needed during the processing of the template itself.

When atemplate refersto itself recursively we normally presume thisto be a
self-reference or amistake and in order to prevent run-aways, recursion is normally
prohibited. Theoption -t enpl at e(2) can be used to activate recursive template
processing. The Rogue Wave library, for example, employs recursive template
evaluation to implement two to the power of N. Therefore, this option has been
placed into thefile: I'i b-rw. | nt

normally, template class member functions defined within the class are not
instantiated unless referenced. Thisflag will force the instantiation of thesein-line
function.

Refrain from instantiating non-dependent template-id's. 1n the past we did not
always instantiate these template-id's during a template definition. Currently we are
more aggressive in doing this instantiation (up to the limits required by the
language). Not all compilers (or even configurations of a particular compiler)
instantiate identically. Activating this flag provides less aggressive behavior.

Examine dependent and formerly dependent base classes during unqualified name
lookup. Section 14.6.2, paragraph 3 of the 2003 version of the ISO C++ Standard
states

"In the definition of a class template or a member of a class template, if a base class
of the class template depends on a template-parameter, the base class scope is not
examined during unqualified name lookup either at the point of definition of the
class template or member or during an instantiation of the class template or
member."

However, during unqualified name lookup, some popular compilers do search in
dependent (and formerly dependent) base classes both at template definition and at
template instantiation time. To enable such name lookup behavior in Lint, use

++t enpl at e(200) . Thisflagwill be ON by default when - cnsc or - cbc are
given.

Note that MSV C7.1 does adhere to the Standard in this regard when given the / Za
flag. Therefore, if you compilewith / Za, you should probably also add - -

t enpl at e(200) after - cnsc inyour Lint configuration. Users of more recent
versions of the Borland compiler may also choose to disable this- t enpl at e bit.

400 Extend scopes of primary template parameters to specializations. Consider the
following case:

tenpl at e<cl ass T> struct A;
tenmplate<> struct A<int>{ T n; };

According to section 14.6.1, paragraph 3 of the 2003 | SO C++ Standard, "The scope
of atemplate-parameter extends from its point of declaration until the end of its
template.” Sointhisexample, "T" isnot in scope after the semicolon that terminates
the definition of the primary template of A. Furthermore, there is nothing to indicate
that it isintroduced in the scope of A<i nt >. However, some compilers (for
example, versions 6 and 7 of the Microsoft compiler, as well as some other
compilersin abackwards-compatibility mode) behave asif the template parameter T
had been re-declared at the onset of A<i nt >. To enable similar behavior in Lint, use
++t enpl at e(400) . Thisbit is set automatically when - cnsc is used.

7. FAST HEADER PROCESSING

7.1 Pre-compiled Headers

7.1.1 Introduction to pre-compiled headers

Most readers of thisinformation will already be familiar with the notion of a pre-compiled header.
A single header is designated as one to be pre-compiled. When an include for this header is
encountered, a special lookup is done to seeif the header had been seen before. If it had not, then
the header and al of itsinclusions to whatever depth, are processed normally and the resulting
digested form is deposited into afile using a name derived in some fashion from the original.

If the name of the header isx. h, the binary information will be dumped into x. | ph. The 3-letter
extension stands for Lint Precompiled Header.

If the header had been seen before, as evidenced by the existence of the file with the derived
name, then in lieu of scanning the file, the deposited information is read in to create a state
identical to the normal scanning process.

This scenario is pretty much replicated in thistool, at least for the first module. For subsequent
modules that reference the origina header, even this binary information isnot read in since it may
have been made obsolete while scanning the second module. Rather, most of the symbols that

would have been generated by the header need simply to be made active rather than inactive. This
iscaled bypassing and is actually a much faster process than reading in the pre-compilation.

The actual mechanics of bypassing will be discussed later in this chapter. 1t will be sufficient here
to note that a header that is designated as apch header will automatically be designated as a
bypass header and this will be evident in the file verbosity (- vf).

7.1.2 Designating the pre-compiled header

To designate that a header isto be pre-compiled use the option:
-pch(header-nane)

The header - name should be that name used between angle brackets or between quotes on the
#i ncl ude line. In particular, if thename onthe#i ncl ude lineisnot afull path name do not use
afull path name in the option.

Normally a pre-compiled header is the first header encountered in each of the modules that
includeit. Occasionaly it is not, because the - header () optionforcefully (if silently) includesa
header just prior to the start of each module. Also, it just might be desirable to include a header
prior to the one declared to be the pre-compiled header. So earlier headers are permitted. But if a
pre-compiled header does follow an include sequence, it must follow that same include sequence
in every module in which it isincluded. Otherwise adiagnostic will be issued.

9. STRONG TYPES
9.2 What are Strong Types?

Have you ever gone through the trouble of making sure that your types are given appropriate
typedef names and then wondered whether it was worth the trouble? It didn't seem like the
compiler was checking these types for strict compliance.

Consider the following typical example:

typedef int Count;
typedef int Bool
Count n;

Bool st op;

n = stop ; // mstake but no warning

This programmer botch goes undetected by the compiler because the compiler is empowered by
the ANSI/ISO standards to check only underlying types, which, in this case, are both the same

(i nt).

The- st r ong option and its supplementary option - i ndex exist to support full or partial

t ypedef - based type-checking. Werefer tothisasst r ong type-checking. In addition to
checking, these options have an effect on generated prototypes. See Section 9.9 Strong Types and
Prototypes

9.4 Multiplication and Division of Strong Types

Unlike other binary operatorsthat expect their operandsto agreein strong type, multiplication and
division often can and should handle different typesin what is commonly referred to as
dimensional analysis. But not all strong types are the samein thisregard. The strong type system
recognizes three different kinds of treatment with regard to multiplication and division.

9.4.1 Dimension (Jd)

A di mensi on isastrong type such that when two expressions are multiplied or divided
(including the modulus operator %) and each type is a dimension, then the resulting type will also
be a dimension whose name will be acompound string representing the product or quotient of the
operands (reduced to lowest terms).

For example:
/11int -strong(AJdX, Sec)
t ypedef doubl e Sec;
Sec X, VY,
X
y

Y; /1 warning: '(Sec*Sec)’ is assigned to ' Sec’
/

X *
3.6 X; /[l warning: '1/Sec’ is assigned to ' Sec’

Flags' AJdX' contain the Join phrase’ Jd’ designating that Sec isadimension. Strictly
speaking the’ d’ isnot necessary because the normal default is to make any strong type
dimensional. However, thereisaflag option - f dd (turn off the Dimension by Default flag)
which will reverse this default behavior and so it is probably wiseto placethe’ d' in explicitly.

Dimensional types are treated in greater detail |ater.

10. VALUE TRACKING
10.2 Value Tracking

Value Tracking was introduced with Version 7.0 of PC-lint/FlexeLint. By vaue tracking we mean
that some information is retained about automatic variables (and about data members of thet hi s

class for amember function and, by Version 9.0, static variables) across statementsin a fashion
smilar to what is retained about the state of initialization. (See Section 10.1 Initialization
Tracking) Consider a simple example:

int a[10];

int f()

{
int k;

k = 10;
return a[k]; /1 VWarni ng 415
}

Thiswill result in the diagnostic message Warning 415 (access of out-of-bounds pointer by
operator '[) because the value assigned to k is retained by PC-lint/FlexeLint and used to decide
on the worthiness of the subscript.

If we were to change things dightly to:
int a[10];

int f(int n)

{
int k;

if (n) k = 10;

el se k = 0;

return a[k]; /1 Warni ng 661
}

we would obtain Warning 661 (Possible access of out-of-bounds pointer). Theword 'possible’ is
used because not all of the paths leading to the reference a[k] would have assigned 10 to k.

Information is gleaned not only from assignment statements and initializations but also from
conditionals. For example:

int a[10];

int f(int k, int n)
{
if (k> 10) a[0] = n;
return a[k]; /1l \Warning 661 -- k could be 10
}

also produces Warning 661 based on the fact that k wast est ed for being greater than or equal
to 10 before its use as a subscript. Otherwise, the presumption isthat k is OK, i.e. the
programmer knew what he or she was doing. Thus the following:

int a[10];

int f(int k, int n)
{ return a[k+n]; } /1 no warning

produces no diagnostic.

Just asit is possible for avariable to be conceivably uninitialized (See Section 10.1 Initialization
Tracking) it ispossible for avariable to conceivably have abad value. For example, if theloop in
the example below is taken O times, k could conceivably be out-of-range. The message givenis
Informational 796 (Conceivable access of out-of-bounds pointer).

int a[10];

int f(int n, int k)

{
int m= 2;
if(k >= 10) mt+; // Hm -- So k could be 10, eh?
while(n--)

{ mt+; k =0; }
return af k]; /] Info 796 - - k could still be 10
}

In addition to reporting on the access of out-of-bounds subscripts (messages 415, 661, 796),
value tracking allows usto give similar messages for the division by 0 (54, 414, 795),
inappropriate uses of the NULL pointer (413, 613, 794), the creation of illegal pointers (416,
662, 797) and the detection of redundant Boolean tests (774), as the following examples show.

Value tracking allows us to diagnose the possible use of the NULL pointer. For example:

int *f(int *p)

{

if (p) printf("\n"); /1 So -- p could be NULL
printf("%", *p); /| \\ar ni ng

return p + 2; /'l \Warni ng

}

will receive adiagnostic for the possible use of aNULL pointer in both theindirect reference (* p)
and inthe addition of 2 (p+2). Clearly both of these statements should have been within the scope
of thei f .

To create truly bullet-proof software you may turn on the Pointer-parameter-may-be-NULL flag
(+f pn). Thiswill assume the possibility that all pointer parameters to any function may be
NULL.

Bounds checking is done only on the high side. That is:
int a[10]; ... a[l1l0] = O;
isdiagnosed but a[- 1] isnot.
There are two sets of messages associated with out-of-bounds checking. Thefirst is the creation
of an out-of-bounds pointer and the second is the access of an out-of-bounds pointer. By "access'

we mean retrieving a value through the pointer. In ANSI/ISO C [1] 3.3.6) you are allowed to
create a pointer that points to one beyond the end of an array. For example:

int a[10];
f(a+ 10); [K
f(a+ 11); /'l error

But in neither case can you access such a pointer. For example:

int a[10], *p, *q;

p =a + 10; [l K

*p = 0; /1 VWarni ng (access error)
p[-1] = O; /1 No Varni ng

q=p + 1; [/ VWarning (creation error)
q[0] = 0; /1l VWarni ng (access error)

Asindicated earlier, we do not check on subscripts being effectively negative. We check only on
the high side of an array.

Though not as critical as pointer checking, tracking values allows usto report that a Boolean
condition will always betrue (or false). Thus

if (n>0)n

:0,
elseif (n<=0)

n=-1; /1l Info 774

results in the Informational message 774) that the second test can be ignored. Such redundant
tests are usually benign but they can be a symptom of faulty logic and deserve careful scrutiny.

10.2.2 Interfunction Value Tracking

With interfunction value tracking PC-lint/FlexeLint will keep track of values that are passed to
functions. When the definition of acalled function is encountered, such values are then used to

initialize the values of parameters. This can be used to determine return values, to record
additional function calls and, of course, to detect errors. To take avery blatant example consider
the following module:

t1. cpp:

1 int f(int);

2 int g()

3 { return f(0); }

4 int f(int n)

5 { return 10 / n; }

Inthisexample, f () iscalled with an argument of 0. Thisturnsthe innocent looking 10/ n into a
lethal divide by O.

Withthecommand|in -u t1.cpp we getthefollowing output:
--- Mbdul e: t1l.cpp

During Specific Wl k:
File tl.cpp line 3: f(0)
tl.cpp 5 Warning 414: Possible division by 0 [Reference:
File t1.cpp: line 3]

The first thing you noticeis the phrase "During Specific Walk". (The notion of Specific Walk is
defined more formally in the next section). Thisisthen followed by the location of afunction
call, the name of the function ('f ' in this case) and a description of the arguments (‘0" in this case).
Thisisthen followed by a conventional error message. Missing from the messageisa
reproduction of theline in error and a handy cursor to identify where on the line the error
occurred. Thisis because the source code at the time the walk occurs has already been passed
over. Thisisnot usually agrave inconvenience as editors and interactive development
environments will locate the source line from information embedded in the error message.

Had the placement of the two functions been reversed asis shown in the module
t2. cpp:

1 int f(int n)
2 { return 10/ n; }
3 int g()
4 { return f(0); }
then there would, by default, be no warning about the possible division by 0. Thisis because by

thetimeweseethef (0) online4, the definition of f () isgone. Itisfor thisreason that the
multi-pass option was introduced. If weissue

lin -u -passes(2) t2.cpp

then the output we obtain is as shown below:

--- Modul e: t2.cpp

/1]l Start of Pass 2 ///

--- Mbdul e: t2.cpp

Duri ng Specific Wl k:

File t2.cpp line 4: f(0)
t2.cpp 2 Warning 414: Possible division by 0 [Reference:
File t2.cpp: line 4]

The- passes(2) option requests two passes through the set of modules. Note that on some
operating systems - passes(2) can't be used on the command line. For such systems, either
- passes=2 or- passes[2] shouldwork. The output reveals, through a verbosity message, the
start of pass 2 indicating that no messages were produced in the first pass. The message that we
do get is otherwise identical to the earlier case.

We can, in some cases, deduce the return value or at least some properties of areturn valuefor a
specific function call. For example, given the module:

t3. cpp:

1 int f(int n)

2 { return n - 1; }

3 int g(int n)

4 { return n/ f(1); }
and the command

lin -u -passes(2) t3.cpp

we obtain the following outpuit:

--- Mbdul e: t3.cpp

/1l Start of Pass 2 ///

--- Mbdul e: t3.cpp

{ return n/ f(l);_ }

t3.cpp 4 Warning 414: Possible division by 0 [Reference:
File t3.cpp: lines 2, 4]

In pass 1 welearnthat f () iscalled with an argument of 1. In pass 2, when we process function
f (), we deduce that this argument will result in areturn value of 0. Later in pass2, wheng() is
processed, we report the division by 0. Note that the message is not preceded by the phrase
"During Specific Walk". Thisisbecause the error was detected during normal general processing
of thefunction g() without using a specific argument value for g() 's parameter.

Specific calls can generate additional calls and this process can repeat itself indefinitely if we
have enough passes. Consider the following example:

t4. cpp:
1 int f(int);
2 int g(int n)
3 { return f(2); }
4 int f(int n)
5 { returnn/ f(n - 1); }

Here adenominator of f (n- 1) inline5is not viewed with suspicion until we realize that the call
tof (2) resultsinacal tof (1), whichresultsinacall tof (0) , which forcesthe return value to
be 0. Giventhe command line

lin -u -passes(3) t4.cpp
we get as output:

--- Mbdul e: t4.cpp

{ return f(2); }
td.cpp 3 Info 715: Synbol 'n' (line 2) not referenced

/1l Start of Pass 2 ///

--- Mbdul e: t4.cpp

/1l Start of Pass 3 ///

--- Mbdul e: t4.cpp

During Specific Wl k:
File td.cpp line 3: f(2)

File td.cpp line 5: f(1)
t4.cpp 5 Warning 414: Possible division by 0 [Reference:

File t4.cpp: lines 3, 5]

Hereit took a 3rd passto determine apossibledivision by 0. To see why 3 passes were necessary
seeoption: - specific_wimt(n).

Notice that the sequence of specific calls, f (2),f (1), isgiven as a prologue to the message
itself.

11. SEMANTICS
11.2 Semantic Specifications (- semn)

The-sem() option allowsthe user to endow his functions with user-defined semantics. This
may be considered an extension of the- f unct i on() option (See Section 11.1 Function Mimicry
(-function)). Recall that withthe-f uncti on() option the user may copy the semantics of a
built-in function to any other function but new semantics cannot be created.

With the - semoption, entirely new checks can be created; integral and pointer arguments can be
checked in combination with each other using usual C operators and syntax. Also, you can
specify some constraints upon the return value.

The format of the- sen() optionis:
-sen(nanme[, sem]...)

This associates the semantics sem... with the named function nane. The semantics semare
defined below. If nosem isgiven, i.e. if only name isgiven, the option is taken as a request to
remove semantics from the named function. Once semantics have been given to a named
function, the- f unct i on() option may be used to copy the semanticsin whole or in part to other
functions.

11.2.1 Possible Semantics

semmay be one of:

r_null thefunction may return the null pointer. Thisinformation isused in subsequent value
tracking. For example:

[*lint -sem(f, r_null) */

char *f();

char *p = f1();

p = 0; /[warning, p nmay be null */

Thisisidentical to the semantic S2 defined in Section 11.1.2 Function listing. Asin
Section 11.1.2 Function listing it is considered a Return semantic. See Section 11.1
Function Mimicry (-function) for the definition of Return semantic. A more flexible way
to provide Return semantics is given below under expressions (exp).

r _no thefunction does not return. Code following such afunction is considered unreachable.
This semantic isidentical to the semantic defined in Section 11.1.2 Function listing as S3;
it isthe semantic used for theexi t () function. Thisaso isconsidered a Return
semantic.

ip (e.g. 3p) thei th argument should be checked for null. If thei th argument could possibly
be null thiswill be reported. For example:

[*lint -sem g, 1p) warn if g() is passed aNULL */
[*lint -sem(f, r_null) f() may return NULL */

char *f();

void g(char *);

a(()); /* warning, g is passed a possible null */

This semantic isidentical to the S1 semantic described in Section 11.1.2 Function listing.

initializer Somemember functionsare used to initialize members. They may be called
from constructors or they may be called whenever the programmer wants to reset the state
of aclassto that which it would have immediately after construction. You may designate
that a member functionis an initializer using the - sem option. (Theinitializer semantic
isaflag semantic). If amember isdubbed aninitializer acomplaint will be issued if it
failsto initialize al of the data members. For example:

[11int -sem(A::init,initializer)
struct A
{
int n;
int m
AQ)
void init()
{ n=20;} [// warning: mis not initialized

s

cl eanup Thecl eanup semantic does for destructorswhat i ni ti al i zer doesfor
constructors. A function designated as cleanup is expected to process each (non-static)
member pointer by either freeing it (in any of the various ways of releasing storage) or, at
least, zeroing it. Failure to do thiswill merit Warning 1578. A function that isa
candidate for this semantic will pointed out by Warning1579. cleanup isaflag semantic

i nout (i) A semantic expression of theformi nout (i) wherei isaconstant designating a
parameter, indicates that an indirect object passed to that parameter will be both read and

written by the function. Thusthei th parameter must be either a pointer (or, equivalently
an array) or areference.

This should not be used with pointers or referencesto const objects, since, in this case,
it is assumed that the object referenced is only read by the function. It is considered an

i n parameter. If the parameter is a pointer or reference to anon-const it isassumed by
default to be an out parameter. That is, the function will only write to the referenced
object but will not read from it.

But there is no linguistic way to deduce that the argument will be both read and written
such as, for example, the first argument to st r cat () . Hence the need for this semantic.

For example:

/[11int -senm addto, inout(1l))

void addto(int *p, int b); // add b to the object pointed to
/1 by the first argunent.
void f()
{
int n;
addto(&n, 12); /1 Warning, nis not initialized
}

custodial (i) wherei issomeinteger denoting thei th argument or the letter 't * denoting
thet hi s pointer. It indicatesthat acalled function will take 'custody' of a pointer passed
toargument i . More accurately, it removes the burden of custody from itscaller. For
example,

/[11int -sem push, custodial (1))
void f()

{

int *p = new int;

push(p);

}

Function f would normally draw acomplaint (Warning 429) that custodial pointer p had
not been freed or returned. However, with the custodial semantic applied to the first
argument of push, the call to push removesfrom f the responsibility of disposing of the
storage allocated to p.

To identify the implicit argument of a (non-static) member function you may usethe’t’
subscript. Thus:

/[/1int -sem(A::push, custodial (t))
struct A { void push(); ... };
void g()

{

A *p = new A
p->push();

}

You can combine the custodial semantic with atest for NULL. For example,
-sem(push, 1p, custodial (1))

will complain about NULL pointers being passed as first argument to push aswell as
giving the custodial property to this argument.

The custodial semantic is an argument semantic meaning that it can be passed on to
another function using the argument number as subscript. Thus:

-function(push(1l), append(1l))

transfers the custodial property of the 1st argument of push (aswell asthetest for NULL)
on to the 1st argument of function append. But note you may not transfer t hi s
semantics using a 0 subscript as that refers to function wide semantics.

An example of the use of the letter t to report thisis asfollows

/[/1int -sem A::push, custodial (t))
struct A { void push(); ... };
void g()

{

A *p = new A

p->push();

}

Note that for the purposes of these examples, we have placed the - semoptions within lint
comments. They may also be placed in a project-wide optionsfile (. | nt file).

pod(i) A semantic expression of theform pod(i) wherei isaconstant designating a
parameter, indicates that the argument is expected to be a pointer to aPOD. A POD isan
abbreviation for Plain Old Datatype. In brief, an object of POD can be treated as so
many bytes, copyable by mencpy, clearable by nenset , etc. For example:

/[/1int -sen(clear, 1p, pod(l)) wants a non-null pointer to POD
class A
{ A(); int data; } a
class B
{ public: int data; } b;
void clear(void *, size t);
void f()
{

clear(&a, sizeof(a)); /| \\arning
clear(&b, sizeof(b)); /1 no \\rning
}

pure Thissemantic will designate afunction as being pure (see definition below). Normally
functions are determined to be pure or impure automatically through an analysis of their
definition. However, if afunction is external to the source files being linted, this analysis
cannot be made and the function is by default considered impure. This semantic can be
used to reverse this assumption so that the function is regarded as pure.

The significance of a pure function isthat it lacksinternal side-effects and this can be used
to diagnose code redundancies. There are anumber of placesin the language (left hand
side of acomma, first or third expression of af or clause, the expression statement) when
it makes no sense to have an expression unless some side-effect isto be achieved. Asan
example

void f() {}
void g()

{
f(); /1 \Warning 522

}

Because we can deducef to be pure, awarning isissued. In general, we may not be aware
until pass 1 isfinished that afunctionis pure. You can use the pur e semantic to hasten
the process of detection.

Another use of this semantic can be to determine on what grounds PC-lint/FlexeLint
considers a function to be pure. If afunction is designated as being pure and is later
deemed to have impure properties Warning 453 will beissued with adetailed explanation
as to why the function isimpure.

Definition of a pure function: A functionissaid to be pureif it is not impure. A function
issaid to be impure if it modifies a static or global variable or accesses a volatile variable
or contains any /O operation, or makes acall to any impure function.

A function call is said to have side-effectsif it isacall to an impure function or if itisa
call to apure function which modifies its arguments.

Example:

int n;
void el() { n++; }
void e2() { static k; k++ }
void e3() { printf ("hello"™); }
doubl e e4(double x)
{ return sqgrt(x); }
void e5(volatile int k) { k++; }

void e6() {el(); }

Each of the functions el through e6 isimpure because it satisfies one of the above
conditions of being an impure function. (Thisassumesthat both pri ntf andsqrt are
externa functions.) On the other hand, in the following:

int f1() { int n = 0; n++; return n; }
void f2(int *p) { *p =11(); }

both f 1 and f 2 are pure functions because there is nothing to designate them impure.
Consider:

/[11int -sem sqrt, pure)
voi d conput e()

{
double x = sqgrt(2.0);

}
void m()
{ conpute(); }

Here, because of the pur e semantic givento sqrt , we get adeserved diagnostic (522,
Highest operation, function’compute’, lacks side-effects) at the call to conput e. I'm
sure the reader will agree that the function conput e shows evidence of alack of
completeness. The author may have been side-tracked during development and never got
back to completing the function. But aswe indicated earlier sqr t would by default be
considered impure sinceitisexternal. It may actually be impure since on error conditions
it needs to set the external variable er r no to EDOM

Nonetheless, from the standpoint of desired functionability, conput e comes up short.
This can be traced to sqrt not offering any desired functionality as a side-effect. Since
thisis the case the programmer was justified in inserting the semantic for sqr t .

Consider the following example:

int f()
{

int n = 0;
n++;
return n;

}

f () isconsidered to be apurefunction. Trueit modifiesn but n isan automatic variable.
The increment operator is not considered impure but it is regarded as having side-effects.

Consider the following pair of functions:

void h(int *p) { (*p)++ }
int g() { int n=0; h(&n); return n;}

Herethe function h() isconsidered pure but note that the call h(&n) has side-effects.
Function g() isexactly analogoustof () above and so must be considered pure.
Function g() callsuponh() to modify variable n in much the same way that f () earlier
employed the increment operator. If g() had provided the address of a global variable to
h() theng() would have been considered impure but not h() . Had we considered h()
to be impure irregardless of the nature of its argument then, since g() is pure, we would
have had to give up the principle that impurity isinherited up the call chain.

type(i) indicatesthat thetypeof thei th argument is reflected back to become the type returned
by the function. The built-in functionsstrchr,strrchr,strpbrk and strstr have

all been pre-endowed with thet ype(1) semantic (in addition to other semantics they
may have).

For example, the usual declaration of strchr () inCis:

char *strchr(const char *, int);
Since the return pointer pointsinto the string buffer passed as first argument then a literal
reading of the prototype could place const datainjeopardy. However, sincest r chr has
been giventhet ype(1) semantic, if the string buffer isconst , the return pointer is
considered const aswell and the usua warnings will be issued on an attempt to assign
thisto aplain char * pointer.

In C++ this problem should not occur asst r chr () isoverloaded:

char *strchr(char *, int);
const char *strchr(const char *, int);

Thet ype(i) semanticisan argument semantic and joins with other argument semantics.
Thus the semantic specification for st r chr () resembles:

-sem(strchr, r_null, 1p, type(l))

This indicates that the first argument should be checked for NULL aswell as having the
t ype property. Were we to transfer the first argument semantics as:

-function(strchr(1), nyfunc(2))
then the second argument of nmyf unc() would have both properties.

nul tern(i) indicatesthat thei th argument isor will become nul-terminated. For example, a
call to the built-in:

strcpy(a, b);

will allow usto presume that both arguments are nul-terminated. An array that contains a
nul-termination or a pointer to such an array will have certain properties that we need to
know about to avoid giving bogus messages. For example:

for(i =0; I <= 10; i++)
{
if(a[i] == 0) break;
}

If array a isnul-terminated (such as a string constant) we won't get too upset if it failsto
contain 11 characters.

nul term(i) wasdesigned for strings but it could also be used for pointer arrays as well.

t hread designatesthat afunctionistheroot of athread. Itisaflag semantic. Thissemantic and
the following thread semantics are more fully described in the chapter on multi-threading.
See Chapter 12. Multi-Thread Support.

t hread_nono designates that the function is the root of a mono thread; i.e. the thread will have
only one instance.

no_t hread designatesthat afunctionisnot athread (used for designating that mai n isnot a
thread). It isaflag semantic.

thread_| ock designates that the function will lock amutex. Itisaflag semantic.

t hread_unl ock designates that the function will unlock a mutex. Itisaflag semantic.

t hread_prot ect ed designatesthat the function is protected by a mutex (useful if, for some
reason thisis not deduced automatically). That is, only onethread at atimeis presumed to

execute the body of the function. It isaflag semantic.

t hread_saf e designatesthat the function isthread safe. This presumably overrides an option
that may otherwise indicate that the function wast hr ead_unsaf e. Itisaflag semantic.

t hread_unsaf e designatesthat the function isthread unsafe (Category #1). Itisaflag
semantic.

t hread_unsaf e(groupi d) designatesthat the function isthread unsafe (Categroy 2). Two
functions with the same gr oupi d are considered asif they were manipulating the same
static data. The groupid is the programmer’s choice.

thread_not[(list)] wheretheoptiona argument listisacommaseparated | i st of thread
names, designates that the function may not be called (to any call depth) by any of the
listed threads. 1f no! i st isprovided then no thread may call the function. t hr ead_not
isaflag semantic

thread_only(list) wheretheargument list isacomma-separated list of thread names,
designates that the function may be called only by threads on thelist. thread_onl y isa
flag semantic.

thread_create(i) designatesthat thefunction'si th argument isathread. It isan argument
semantic

exp asemantic expression involving the expression elements described below:
in denotesthei th argument, which must be integral (E.g. 3n refersto the 3rd
argument). An argument isintegral if itistypedi nt or some variation of integra

such aschar, unsi gned | ong, an enumeration, etc.

i may be @(commercial at) in which case the return value isimplied. For example,
the expression:

@ ==4[| @ > 1n

states that the return value will either be equal to 4 or will be greater than the first
argument.

i p denotesthei th argument, which must be some form of pointer (or array). Thevalue
of thisvariableisthe number of items pointed to by the pointer (or in the array). For
example, the expression:

2p == 10
specifies a constraint that the 2nd argument, which happens to be a pointer, should
have exactly 10 items. The number of items " pointed to" by astring constant is 1
plus the number of characters between quotes.
Just aswithi n,i may be @in which case the return value is indicated.
i P islikei p except that all values are specified in bytes. For example, the semantic:

2P == 10

specifies that the size in bytes of the area pointed to by the 2nd argument is10. To
specify areturn pointer where the area pointed to is measured in bytes we use @.

i nteger (any C/C++ integral or character constant) denotes itself.

i denti fier may beamacro (non-function type), enumerator, or const variable. The
i denti fi er isretained at option processing time and evaluated at the time of
function call. If amacro, the macro must evaluate to an integral expression.

mal | oc(exp) attachesanal | oc alocation flag to the expression. Seethediscussion
of Return Semanticsin Section 11.2.2 Semantic Expressions.

new(exp) attachesanewallocation flag to the expression.
new] (exp) attachesanew|] allocation flag to the expression.
()
Unary operators: + - | ~
Binary operators:
+ - * | %< <= == l=>>= | & N << > || &&

Ternary operator: ?:

12. MULTI-THREAD SUPPORT
12.1 Overview

Thisfacility allows one or more concurrently executing threads to be identified as being
associated with particular root functions. A pair of (user-designated) functions can be associated
with mutex locking and unlocking. Abnormalitiesin locking and unlocking are identified.

Starting with each root function, we deduce the set of static variables accessed by each thread and
whether these accesses are or are not protected by mutex locks. By static variable, we mean any
variable that has static storage duration. That is, any variable that isnominally static (whether
within or outside afunction) and variables that are considered global (i.e. ext er n) or, for C++, at
namespace scope. Reports are made of unprotected access to static variables shared by one or
more threads.

External functions can be identified as being thread unsafe individually or in groups. Access by
multiple threads to such functions are reported if proper protections are not in place. Functions
that are compatible with only a subset of threads can be identified.

12.2 Identifying Threads

Threads are amost aways associated with a function and we will assume that to be the case here.
That is, the static text associated with a thread consists of a function (designated as a thread root)
and all functions called by that function to whatever depth. By default, nai n() ispresumed to be
athread root, but options can overrule that presumption.
There are two basic ways of identifying threads: (1) via options and (2) automatically.
(1) Optionsto Identify Threads
The option:

-sem(function-nane, thread)
will identify f uncti on- nanme asathread. For example:

-sem(input_reader, thread)
will identify i nput _r eader asathread. Like all semantics, this option must be given before the
function isdeclared or defined. The name of the function may be fully qualified if amember of a

class or namespace.

By default, it isassumed that athread can experience multiple concurrent instances. Thiswill
trigger the most diagnostics. Consider for example the following code:

[11int -sem f, thread)

void f()
{
static int n = 0;
n++;
[* ... %/
}

Thisresultsin: War ni ng 457: "Thread ' f(void)’ has an unprotected wite
access to variable 'n’ which is used by thread 'f(void)’. SeeWarning 457

In some cases, however, it isguaranteed that there will be only oneinstance of a particular thread.
We refer to such threadsasnono t hr eads. The appropriate semantic to provide in such a case
ist hread_nono. For example,

-sem(f, thread_nono)

will identify f asamono thread. If f had been so identified in the example above, the diagnostic
would not have been issued.

By default, mai n() would be regarded as a(mono) thread. Removing the thread property from a
function is accomplished with the no_t hr ead semantic.

-sem(function-nanme, no_thread)
Example:
-sem(main, no_thread)
(2) Automatic Identification of Threads
Using POSIX threads, we can automatically identify athread because it is passed as the third
argument to pt hr ead_cr eat e. For example:

pt hread create(& nput_thread, NULL, do_input, NULL);

can indicateto usthat do_i nput () isaseparate thread.

We will assume that this thread is not mono. If it ismono and your code depends on that fact,
then you will have to identify the thread ast hr ead_nono (see above).

If you are not using POSIX threads you will probably want to be able to transfer this
pt hread_creat e() property to another function of your choice.

Using function mimicry, we can write:

-function(pthread create(3), our_thread create(2))
and thiswill copy the properties of the 3rd parameter of pt hr ead_cr eat e to aparticular
parameter of your choice. In the above we transfer the thread creation property to the 2nd

parameter of our _t hread_create.

We also provide (somewhat redundantly) a separate argument semantic to designate this property
directly. The semantic

thread create(i)

identifiesthei th argument of afunction as being athread endowing argument. Thus after:
-sem(their_thread create, thread create(l))

the call

their _thread create(reader, ...);

will identify r eader asathread.

12.3 M utual Exclusion

To make a static analysis meaningful, we need to identify areas of the codeinwhich only asingle
thread can operate. These are called critical sections or, as we will term them, t hr ead

prot ected regi ons. Theuseor modification of global variables by two different threadsis not
considered aviolation of thread safety, provided such access lies within protected regions.

There are two ways of identifying thread protected regions of code: (1) by option and (2)
automatically.

(1) By option:

-sem(function-nanme, thread protected)
will identify f unct i on- nanme as athread protected region of the program. Normally, this option
would not be needed as it is expected that thread protected regions would be detected
automatically. If the automatic methodsfail, you can fall back on using this option. Just make sure
that only onethread at atime will be permitted to use this function or, at least, those portions of
the function that access global variables or make calls on functions that access global variables.

(2) Automatic detection:

An alternative to identifying afunction ast hr ead_pr ot ect ed isto identify which primitive
functions can lock and unlock a mutex.

-sem(function-nane, thread_|ock)

will identify f unct i on- name asafunction that will lock a mutex.
-sem(function-nanme, thread unlock)

will identify f unct i on- nanme asafunction that will unlock a mutex.

By default, functions pt hr ead_nut ex_| ock() and pt hr ead_nut ex_unl ock() havethe
thread_| ock andt hread_unl ock properties respectively.

By identifying lock and unlock primitives, we have two advantages over the

t hread_pr ot ect ed function semantic. We have afiner grain control over the identification of
areas of mutual exclusion. Also we can assist the user in finding mismatched lock and unlock
primitives. For example:

/1lint -sem(lock, thread | ock)

/[11Tint -sem unlock, thread_unlock)

extern int g();
voi d | ock(void), unlock(void);

void f()
{
| ock();
unl ock(); /] great
[]-mmmm e o -
| ock();
it g())
{
unl ock();
return; /1 ok
}
unl ock(); [l still ok
A
| ock();
it g())
return; /1 Varni ng 454
unl ock();
A
it g())
{
| ock();
unl ock();
unl ock(); /1 \arning 455
return;
}
A
it g())
| ock()
{ /1 Varni ng 456
/1 do something interesting
}
it g())
unl ock();
} /1 VWarni ng 454 and 456

In the example above, Warning 454 isissued if areturn is encountered when a mutex is still
locked. Warning 455 isissued if an unlock has been issued without a corresponding lock. A
Warning 456 isissued if two execution paths are combined that do not have the same lock state.
Even if an unlock is provided later under the same’i f * condition the practiceis considered
unsafe.

12.4 Thread-Protected (TP) Regions

Any portion of afunction between a mutex lock and its corresponding unlock is considered to be
athread-protected (TP) region. A common name for aTP region isacritical section.

A function identified asbeing t hr ead_pr ot ect ed (using the - semoption) is considered to be
TP and the entire function is said to be a TP region.

Any access (read or write) to avariable outside a TP region is considered non-protected. Any
thread that can arrive at such a non-protected access, possibly through a sequence of callsin non-
TP regions, is considered to have a non-protected access to the variable,

Consider the following example:

/11int -sem reader, thread)
/[/1int -sem |ock, thread_| ock)
//1int -sem unlock, thread unlock)

int Xx;

int vy;

void create(...);
voi d | ock(void);
voi d unl ock(void);

void g(void);
void h(void);

void reader() { g(); }

void g(void)

{
| ock();

y = 1;
h();

unl ock();

}
void h(void) { x = vy; }

int main()

{

create(reader);

h();

return O;

}

This example contains two threads: nai n() and r eader () and some lapses in the protection of
global variables. Function g() has athread-protected region from which it callsh() and

modifiesy. Thevillain in the pieceisthread mai n() which calsh() without a mutex lock.
Messages issued are:

Warni ng 457: Thread 'main(void)’ has an unprotected wite access to
variable 'x* which is used by thread ’'reader(void)

War ni ng 458: Thread 'main(void)’ has an unprotected read access to
variable "y’ which is nodified by thread ’reader(void)

12.5 Constructor-triggered mutex locking

Mutex locking and unlocking can be controlled by the constructor and destructor of a particular
class. The previous example might be rendered as follows:

//1int -sem reader, thread)
//1int -sem Lock::Lock, thread | ock)
/11int -sem Lock::~Lock, thread unl ock)

int Xx;
int vy;
void create(...);
struct Lock

{

Lock();
~Lock();
1

void g(void);
void h(void);

void reader() { g(); }

void g(void)
{

Lock | ock;
y = 1
h();

}

void h(void) { x = vy; }

int main()

{

create(reader);

h();

return O;

}

Here the destructor for Lock will be called automatically before the function is terminated. The
analysis will be the same and the very same problems reported earlier are reported here.

12.6 Function Pointers

If afunction has had its address taken, then we presume that we do not know the context of every
call made upon that function. Inthe worst case, it could be called by every thread. For that
reason, we feel it ismeritorious to report on every non-protected access to every static variable.

Consider thetale of two functions, f 1 and f 2, as presented in the example below.

[11int -sem t, thread)
[11int -sem f2, thread protected)

int Xx;

int y = 0;
void s(...);
void g();

int f1() { return x; }
void f2() { y = x; }

void t()
{ 90); }

void h()
{ sC f1); s(f2); }

Thefact that t isathread is sufficient to trigger athread analysis. Bothf 1 and f 2 have their
addresses taken and are subject to extended scrutiny. They both access static variables which
would be causefor issuing warnings. But f 2 isidentified asat hr ead_pr ot ect ed function and
therefore isimmune from this criticism. The onewarning issued is

Warni ng 459: Function *f1(void)’ whose address was taken has an
unprotected access to variable ’x’

12.7 Thread Unfriendly Functions

Functions that are inappropriate with some aspects of multi-threaded programs form five
categories of severity. Thisformulation wasinspired by severity ratings of hurricanes and, like
hurricanes, the higher the number the more severe the function.

Category 1: A function is considered category 1 in a multi-threaded (M T) program if, when
called from more than one thread, each call needs to be made from a protected region (i.e., a
critical section).

Category 2: A function is considered category 2 if it belongs to a group of functions such that
whenever two members of this group are called from two different threads, all calls to this group
need to be made from a protected region.

Category 3: A function is considered catgory 3 if every call on such afunctioninan MT
program needs to be made from a protected region.

Category 4: A function is considered category 4 if it may not be called from a prescribed subset
of the threads.

Category 5: A function is considered category 5 if it may not be called at all. These have been
identified in the literature as MT illegal (see [31] Table 12.1).

12.7.1 Thread Unsafe Functions (Category 1)

A function is considered thread unsafe (more commonly called’MT unsafe’; see for example
[31], Chapter 12]) if it cannot be used concurrently from two different threads without the
protection of amutex lock. Thisis Category 1.

Generally the function in question is an external function. The reason the function isunsafeis,
presumably, that there are static data structures that are manipulated by the function but since the
function’s source code is not available, it needs to be identified explicitly.

However the function does not have to be external. A fully defined function can beindicated as
being unsafe and all the cautionary warnings will still be issued.

You can identify functions that are thread unsafe by the semantic
-sem(function-name, thread unsafe)

And although the need for thisis not yet apparent, you may identify functions as thread safe by a
similar semantic:

-sem(function-name, thread_safe)
Thiswill be useful when you are using an option, yet to be discussed, that indicates that every
function within a header isthread unsafe. See +t hr ead_unsaf e_h in Section 12.7.4 Header
Options.

Consider the following example:

[llint -sem(f, thread_nono)
[llint -sem g, thread_unsafe)
[llint -sem(h, thread_unsafe)

void g();
void h();

void f()
{ 9(); h(O); 1}

int main()

{7/* 90): }

Herenmai n() andf () arethreads; functionsg() and h() are both thread unsafe. None of the
callsare protected. Warning 460 isissued when it isobserved that an unprotected call is made to
g() from both threads. Warning 460 is not issued for the function h() sinceit iscalled from
only one thread.

However, Info 847 will be issued alerting the user to the fact that thread unsafe functions, h()
and g() , areinvoked with unprotected calls. If h() isconsidered Category 3, thecall toh()
should be placed in acritical section. Otherwise the message can be inhibited for this function (or
all functionsif there are no Category 3 functionsin the program).

If f() wereathread but nott hr ead_nono so that multiple copies of the thread could exit, then
Warning 460 would be issued for function h() .

If either call to g() were protected (but not both) Warning 460 would still be issued for g() .
Thisfollows from the principle that no thread is permitted to have unrestricted accessto any static
dataif accessismade from two or more threads.

12.7.2 Category 2 Functions

An oft-occurring situation iswhen several external functionsin alibrary (think st di 0. h) access
acommon pool of data and where thread safety was not part of the library design. Such functions
typically can be accessed by one thread even on an unprotected basis without harm. However if
another thread accesses any of the functionsin the group, then al calls to any member of the
group from any thread must be made in a thread protected region. This precisely follows our
definition of a Category 2 function. It might be argued that a category 1 function isjust a category
2 function with agroup of size 1. True, but when it comesto discussing options involving headers
and directories the categorization will be useful.

Category 2 groups of functions are quite common and the usual technique is to designate one
thread as the thread that will access the library. If any other thread calls upon the services of the
library, such calls will be detected.

To successfully analyze callsto such libraries, the notion of a group of functionsisrequired. The
semantic that specifiesthat afunctionist hr ead_unsaf e isextended to include an optional
group identification. For example, the option:

-sem x, thread_unsafe(xyz))

specifiesthat x isamember of the xyz group where’xyz’ isan arbitrary name to designate the
group. There are presumably other functions that will use the same group id.

Consider the following example:

[llint -sem(f, thread_nono)
//lint -sem(g, thread_nono)
/[11int -sem x, thread unsafe(xyz))
/[/1int -sem y, thread unsafe(xyz))
/[/1int -sem z, thread_unsafe(xyz))

void x();
void y();
void z();

void f()
{ x(O); vyO; }

void g()
{ z0); }

Here, two threads that are presumed not to have multiple instances of themselves

(t hr ead_nono) invoke members of asingle group (the xyz group). Warnings are issued for
each pair of functions from the xy z group that are called from different threads. For example, a
warning isissued on the call to function z() becausez() iscalled from adifferent thread but is
inthesamegroup asx() andy() and none of the calls are made from a protected region. There
are also Informational messages (847) about the unprotected calls to thread unsafe functions.

12.7.3 Category 3 Functions

To detect abuses of Category 3 functions you need to enable Info 847 for that function. By
default Info is already activated so it would seem that you would have very little to do.

But this means that an 847 would be issued whenever any function were called from an
unprotected region. Thisis presumably not what you would like to have happen.

The solution isto use the option sequence:

-e847 +esym(847, cat 3func)

where cat 3f unc is, of course, one of the category 3 functions you want to detect.

Note that as of thiswriting there is no other way to designate a function as Category 3.

12.7.4 Header Options

Thread safety (or the lack thereof) of functions can also be designated by the header files that
contain declarations for them. In a process analogous to thetriplet of options| i bcl ass, | i bdi r
and | i bh to specify the set of headers that are library, thereisa similar triplet of optionsto
specify thread safety.

The option:

+t hr ead_unsaf e_h(header-name)

specifiesthat all the functions declared in the given header (not otherwise specified with the- sem
option) are thread unsafe. Thisis category 1 thread safety. That is, no grouping isimplied.

By contrast

+t hr ead_unsaf e_gr oup_h(header-name)
specifies that all the functions declared in header-name are thread unsafe and a so belong to the
same group whose name is the same as header-name. That is, the functions become category 2
functions.
Multiple headers can appear in category 2 options such as, for example,

+t hread _unsafe_group_h(stdio.h, stdlib.h)

This specifies that all the functions declared within either of the two headers belong to a group
whose nameis

"stdio.h,stdlib.h"

12.7.5 Directory Options

The option:
+t hr ead_unsaf e_di r(directory-name)
specifiesthat al headers found in the named directory (unless otherwise specified) are category 1

headers. That is, al functions declared within the headers are category 1 functions and belong to
no group.

This can be overridden in anumber of ways. An option of the form
-t hread_unsaf e_h(header-name)

indicates that the named header is not thread unsafe even if it were found in a directory-name of a
+t hr ead_unsaf e_di r option. On the other hand, the option

+t hr ead_unsaf e_gr oup_h(header-name)

overridesthe +t hr ead_unsaf e_di r option for the particular header making that header
category 2.

The option
+t hread_unsaf e_group_di r (directory-name [, directory-name] ...)

specifiesthat the files found in the directories are each category 2 and all are under the same
group name formed by the obvious comma-separated concatenation of directory names.

By contrast:
+t hr ead_unsaf e_group_di r(directory-name (*))
note the trailing (*) -- will designate that each header found is a category 2 header with agroup

name equal to its own name.

12.7.6 Thread Unsafe Classifications

The most general option (but one capable of being overridden by the previous two) is of the form:
+t hread_unsafe_cl ass(identifier [, identifier] ...)
The available identifiers are as follows:

al | -- All headers arethread unsafe. That is, al functions declared in headers are
considered thread unsafe.

ansi -- All standard C headers are thread unsafe (see Section 6.1 LibrariesHeader Files
for alist).

angl e -- All headers specified by angle brackets are thread unsafe.

forei gn -- al headersthat are found viaasearch list (-i option or | NCLUDE
environment variable) are thread unsafe.

In each case the degree of thread unsafety is category 1. By contrast, the option:
+t hread_unsaf e_group_cl ass(identifier [, identifier] ...)
designates category 2. The identifiers allowed are those listed above for the
t hread_unsaf e_cl ass option. The category 2 group name isthe identifier itself with priority
givento ansi , angl e, forei gnandal | inthat order. For example

+t hread _unsaf e _group_cl ass(angle, all)

will place all headers included with angle brackets in the group named angl e and will place all
other headersintheal | group.

12.7.7 Prioritiesin Thread Unsafety

To determine the thread safety of aparticular function, f , the following steps are taken:

(2) If asemantic for f isgiven specifying either t hr ead_saf e ort hr ead_unsaf e with or
without a group name, this determines whether or not f isthread safe and in which group it lies.

(2) Otherwiseif f isdeclared in a header file and that header file had been designated by the
+t hr ead_unsaf e_group_h optionthenf ist hread_unsaf e category 2 and the group name,
if not previoudly given, istaken from the option.

(3) Otherwiseif f isdeclared in a header file and that header file had been designated by the
+t hr ead_unsaf e_h option, thenf ist hr ead_unsaf e category 1.

(4) Otherwiseif f isdeclared in a header file and that header file had been found in adirectory
designated by the +t hr ead_unsaf e_gr oup_di r option, thenf ist hread_unsaf e category 2
and the group name, if not previously given, is taken from the option.

(5) Otherwiseif f isdeclared in a header file and that header file had been found in a directory
designated by the +t hr ead_unsaf e_di r option, thenf ist hread_unsaf e category 1.

(6) Otherwiseif f isdeclared in aheader file and that header file satisfies one of the
classifications of the +t hr ead_unsaf e_group_cl ass optionthenf ist hr ead_unsaf e
category 2 and the group name is the most specialized of the classifications.

(7) Otherwiseif f isdeclared in a header file and that header file satisfies one of the
classifications of the +t hr ead_unsaf e_cl ass option, thenf ist hread_unsaf e category 1.

12.7.8 Category 4 Functions

A function may be identified as a Category 4 function by using the semantict hr ead_not (list)
orthread_onl y(list) wherein each caselist isacomma separated list of thread names. If a
thread appearsinat hr ead_not list then that thread may not invoke the function. By contrast, if
athread does not appear inat hr ead_onl y list then that thread also may not invoke the function.

This prohibition from use extends even to thread protected regions.
Consider the following example:

[llint -sem f, thread)

/[/1int -sem g, thread)

[11int -sem a, thread not(f))

/[/1int -sem b, thread _only(g, main))
/[/1int -sem c, thread protected)

(@]

void a();
void b();
void c()

{
b();
}

void f()
{

a();
c();
}

Heref (), asathread, invokes (directly or indirectly) a(),b() andc(). A messageisissued for
a() sincethesemantict hr ead_not (f) explicitly excludesthread f () . A messageisalso
issued for b() sinceb() may be used only withing() or nai n() .

You would not normally use both thet hr ead_not semantic andthet hr ead_onl y semantic for
the same function.

Note that the call upon b() is made from aprotected region. Unlike Categories 1 through 3,
protecting the call does not eliminate the message.

12.7.9 Category 5 Functions

Since afunction in this category is not to be used at all you can employ the deprecate option (see
-depr ecat e). For example, if function cr ash isnot to be used at all use the option:

-deprecate(function,crash, Ml illegal)

Alternatively, and, perhaps, preferably, you may usethet hr ead_not semantic. Thus
-sem(crash, thread_not)

will have the effect of producing Warning 462 when cr ash iscalled. This has the benefit of
providing you with the name of the thread that isinvoking cr ash.

12.8 Thread L ocal Storage

Thread Local Storage (TLYS) is storage that is allocated separately for each thread initiated.
Referencesto TL S data do not require locks or critical sections.

Two syntactic forms are recognized.

12.8.1 thread

Thereserved word __t hr ead can be used as a modifier to identify avariable as having thread
local storage (TLYS). E.g.

__thread int n;
identifies n as being thread local. The reserved word needs to be activated with:

+rw(__thread)

12.8.2 declspec(thread)

The declaration:
__decl spec(thread) int n;

will declare n to be thread local.

12.9 Atomic Access

12.9.1 Atomic Operations

An atomic operation on datais one which, once started, will not be interrupted (by the hardware)
until completion. In this section we will describe how a programmer can designate that |oads and

stores of sometypesare atomic. It isthe programmer’sresponsibility to know which types can be
loaded and stored atomically.

For example, let n be a 64 bit integer emulated in software by two 32 bit integers. A load of the
64-bit integer may consist of a pair of machine instructionsthat each load 32 bits. Typically an
interrupt can occur between these parts of the access and, hence, the 64-bit integer is not atomic.

Suppose, for example, we attempt to execute:
X = n;

in thread A and that the read of n isindeed interrupted. Suppose further that another thread B is
writing ton. It would be possible to assign to x avalue consisting of aportion of n before the
write (by thread B) and a portion of n after the write. It is often the case that either value for n,
either the one before the write by thread B or the one after the write by thread B would be
perfectly OK. What is not OK would bethisill-formed combination. Thereisamoviecalled
"The Fly" which provides an especially evocative analogy.

Any operation consisting of multiple machine instructions will generally be non-atomic. There
are also operations consisting of a single machine instruction that are not atomic. For example,
block move instructions are often designed to be non-atomic. In such cases, machine registers
(that are saved and restored by interrupt processing) are used to hold the partial state of the move.

By default, we assume that values are read and written non-atomically. If avariableisread by
thread A without a mutex lock and the same variable is written by thread B (even with a mutex
lock), Warning 458 will beissued. However, if it is given that the variable can be read
atomically, no warning need be issued. Since setting a mutex lock can be expensive (especialy
compared with aload) this can represent a significant speed improvement. By contrast, if threads
A and B write to the same variable, even if the variable is considered atomic, awarning (457)
will still be issued.

A variable is often not avalue to be used in isolation but rather is correlated with other values.
For example, the count of the number of entries of an array is correlated with the content of the
array. Doesit make sense to declare access to the count an atomic operation? Actualy, yes. Ina
producer-consumer situation, the consumer may want to do a quick check to seeif the count isnot
zero and, if so, enter a protected region where it can remove an item.

So far, so good; but suppose the consumer is accessing the count to compare it with the last one
that it consumed. Herethe count is not just a binary value (zero or not) but isavaueto be
compared. If the producer from its protected region is writing the count concurrently with the
consumer reading the count, the count has to be written atomically. Otherwise the reader will be
reading avalue that is half old and half new with possible del eterious consequences.

Thus a variable declared to have a type that is deduced to be atomic must not only be read
atomically, it must also be written atomically, if the variable is correlated with other valuesand is
not just Boolean.

12.9.2 Atomic Types

The following option enables you to identify which types are considered atomic.
-atom c(type-pattern)

Any variable whose type matches the type-pattern will be considered atomic. An (atomic) type-
pattern can be any of the following:

1) anunqualified scalar type; thiswill match the same scalar type with the possible addition of
qualifiers.

E.g.-atomi c(int) matchesint const butnoti nt*.
2) thekeyword any_t ype; thiswill match any type.
3) thekeyword any_scal ar ; thiswill match any scalar.

4) apointer to atype-pattern P; thiswill match apointer of any qualification to atype T provided
P matchesT.

E.g.-atonic(any_type *) matchesint*,int** andint **const butnotint.
5) atype-pattern qualified (on the right) by one of the keywords At oni ¢_, near or f ar. These
are called the atomic modifiers. Systemswhich support near and f ar pointers are the
exception rather than therule. You shouldn’t be using them to designate that atype isatomic
unless your compiler supportsthem. At oni c¢_ on the other hand isintended to be used even if
your compiler does not recognizeit. A pattern P modified by M will match atype T modified
by M provided P matches T.

E.g.-atomic(any_scal ar Atom c_) matchesi nt Atomic_,int *Atom c_and
int Atomic_ *Atonmic_ butnotint Atomic_ *.

Quick Notes:
a) A scalar typeisany integra type, floating type, enum, or pointer.

b) Thekeywordsany type andany_scal ar arekeywords only for the duration of the
-at omi c option. They are never placed in the rest of your program.

c) Theappearance of the - at oni ¢ option triggers the creation of the At oni ¢_ keyword that
serves as atype modifier. Thiscan be used in your programs. For example, given:

-atom c(any_type Atomc_)

then

d)

f)

9)

h)

float Atom c_ Xx;

indicates that x isatomic. Your compiler, however, will not recognize this modifier and so
you will need something like the following somewhere in your code:

#i fndef _Ilint
#define Atom c_
#endi f

Asimplied above, for atype to match a type-pattern it must have the same or more modifiers
(in corresponding pointer levels) asthe type-pattern. Again, the only modifiers considered are
near,far and At omi c_.

For example:

/[/1int -atomc(int * Atomc_)
[11int +rw(near)

11

int * Atomc_ p; /1l atomc

int Atomc_ *q; /1 not atomc
int near Atomc_ *Atomc_ r; /[l atomc

int Atomc_ *Atom c_ near s; /1l atomc

int * Atom c_ const t; /] atomc

The - at omi ¢ option may appear in either an indirect file (a. | nt file) or in source code as
part of al i nt comment option. Indeed, for the option to refer to atype defined in the source
code it is necessary to place the option in the source code at some point after the type’s
definition.

The argument to - at oni ¢ isactually processed twice. Thefirst timeiswhen the optionis
seen at which time the pattern is saved. The second timeis at the start of processing source
code at which time the pattern is compiled. This assuming the option is given before source
codeis processed. If the option isencountered in alint comment the two steps are taken at
that time. But in no case is a saved type-pattern recompiled.

Atomicity is not lost when the type goes through a typedef. E.g.

/[/1lint -atomc(int Atomc_)
typedef int Atom c_ Atom c;

Atom c X; /1l variable x is an atom c int

Theoption - at omi c(any_t ype *)indicatesthat every pointer is atomic

Asafina example consider the following:

[/lint -atom c(unsigned char)
unsi gned char volatile ch;
unsi gned char f()
{ return ch; }
void g()
{ ch =0 }

In the above code, the - at onmi ¢ option designates that the type unsi gned char and all its
qualified variants are atomic. Therefore, ch will be considered to be read atomically. This
implies that in amultithreaded environment, wheref () and g() can be called from two different
threads, g() will haveto beinvoked from athread protected region. But f () can befreely called
by any thread at any time.

But suppose you don't want vol at i | e charactersto be considered atomic. Under these
circumstances it is better to use the At omi c_ qudlifier.

//1int -atom c(unsigned char Atomc_)
unsi gned char vol atile ch; /] not atom c
unsi gned char Atomc_ atomc_ch; [/ atomc

12.10 Declar ative M ethods

It is possible to use declarative mechanisms to guarantee coincidence of purpose between data
(shared among multiple threads or not) and function (thread safe or not).

It so happens that there are a number of old modifier flags that can be used for this purpose. One
such isthekeyword 'f or t r an’. Thiskeyword isnormally not active. When it was active,
compilers would use the modifier as a clue to employ afortran-like calling sequence for any
function so designated. Lint would ssmply ignore these intended semantics and restrict its usageto
ensuring that declarations would be consistent with respect to this modifier. For example, you
wouldn’t want to pass a pointer that points to a Fortran function to a pointer that points to a non-
fortran function. These simple type-qualification semantics can be used as the basis for anew
keyword, inthis case’ Shar ed’.

For example:
/11int -rw asgn(Shared,fortran)
struct X { void f() Shared; void g(); ... };
X Shared a;
X b;

é:i‘(): /1 OK

a. g(); /1l Error

b.f(); Il Error

b.g(); Il OK
In this example a is shared among several threads. x: : f () knowshow to deal with the multiple
thread situation. X: : g() doesnot. So clearly a. g() isan error. On the other hand, b is not

shared. Presumably it would be amistaketo invokeb. f () because the costly mechanism of
mutex locking embedded within X: : f () isnot necessary.

Using functions rather than member functions we can obtain the same effect.

[/lint -rw_asgn(Shared, fortran)
struct X { ... };

void f(struct X Shared *);
void g(struct X *);

struct X Shared a;

struct X b;

f(&); [l K
g(&); /'l Error
f(&); /'l Error
g(&b); [OK

In additionto ’f or t r an’ there are anumber of other old modifiers that could be employed

including: ’'pascal ’,’_fastcal | ',and’_I oadds’.

Any such modifier that is used in the formation of atype will be embedded within that type when
the typeisdisplayed for diagnostic purposes. The namethat isused by default will be the original
qualification name. This name will be overridden when the - r w_asgn option assigns a modifier
to some new name.

13. OTHER FEATURES

13.12 M1 SRA Sandards Checking

The Motor Industry Reliability Association (MIRA) released a programming guideline for C in
1998 (sometimes referred to as MISRA C1), and arevised version was released in 2004 (MISRA
C2). In 2008, MIRA released guidelinesfor C++ (MISRA C++). PC-Lint/FlexeLint have
supported checks for the available MISRA guidelines since early 2001, and we intend for Lint to
provide ongoing and increasing support for these guidelines.

The primary way of activating MISRA checking for MISRA C2 guidelinesis viathe author file

au-m sra2. |l nt

This contains the appropriate options to activate and annotate Lint messages dealing with MISRA
C2. Toactivate MISRA C1 checking, usethefileau- ni sral. | nt. To activate MISRA C++
checking, usethefileau- m sra-cpp. | nt.

Lint can report violations of several MISRA C rules with messages 960 and 961 and of C++
rules with messages 1960 and 1963. Additional rules, are covered in other messages, the details
of which you can find listed inthe au-ni sral. | nt,au-mi sra2.|nt andau-m sra-

cpp. I nt files.

To specify aparticular MISRA C/C++ standard, you can usethe - mi sr a option. For example, if
you want to specify MISRA C2 explicitly, you can use either: - mi sra(2),-mi sra(C2)
-m sra(C2004) , but the preferred method isto usethe au- ni sra2. | nt file.

Conversely, you can specify the 1998 MISRA C Standard by using either: - mi sra(1), -
m sra(Cl) or-m sra(CL1998), but the preferred method isto usethe au- mi sral. | nt file.

Should MISRA release an additional C++ Standard, the - i sra() option will possess the ability
to specify the particular version.

Note: Although the descriptions for messages 960, 961, 1960, and 1963 liststhe MISRA rules
covered by these messages, the best overall documentation on MISRA coverage isthe appropriate
au-ni sra... file.

13.13 Stack Usage Report

+stack(sub-option,...)
-stack(sub-option,...)

The +st ack version of this option can be used to trigger a stack usage report. The- st ack
versionisused only to establish aset of optionsto be employed should a+st ack option be given.
To prevent surprisesif a- st ack optionis given without argumentsit is taken as equivalent to a
+st ack option.

The sub-options are:

& il e=filename Thisoption designatesthe file to which the report will be written. This
option must be present to obtain a report.

&overhead(n) establishesacall overhead of n bytes. The call overhead is the amount of
stack consumed by a parameterless function that allocates no aut o storage.

Thusif function A() , whose auto requirements are 10, calls function B() , whose auto
requirements are also 10, and which calls no function, then the stack requirements of
function A() are 20+n where n isthe call overhead. By default, the overhead is 8.

&ext ernal (n) establishes an assumption that each external function (that is not given an
explicit stack requirement, see below) requires n bytes of stack. By default thisvalueis
32.

&unmmary Thisoption indicates that the programmer isinterested in at least a summary of
stack usage (stack used by the worst case function). The summary comes in the form of
Elective Note 974 and is equivalent to issuing the option +e974. Thisoption is not
particularly useful since asummary report will automatically be given if a+st ack option
isgiven. Itisprovided for completeness.

name(n) wherenane isthe name of afunction, explicitly designates the named function as
requiring n bytes of total stack. Thisistypically used to provide stack usage values for
functions whose stack usage could not be computed either because the function is
involved in recursion or in calls through afunction pointer. nanme may be aqualified
name.

For example:
+stack(& ile=s.txt, alpha(l2), A :.get(30))

requests a stack report to be written to files. t xt and further, that function al pha()
requires 12 bytes of stack and function A: : get () requires 30.

At globa wrap-up, arecord is written to the file for each defined function. The records
appear aphabetized by function name.

Each record will contain the name of afunction followed by the amount of auto storage
required by itslocal auto variables. Note that auto variables that appear in different and
non-tel escoping blocks may share storage so the amount reported is not simply the sum of
the storage requirements of all auto variables.

Each function is placed into one of seven categories as follows:

(1) recursive | oop--afunctionisrecursive | oop if itisrecursive and we can
provide acall to afunction such that that call isin arecursive loop that terminates with the
original function. Thus the function is not merely recursive but demonstrably recursive.
The record contains the name of afunction called and it is guaranteed that the called
function will also be reported asr ecur si ve | oop.

It is assumed that any recursive function requires an unbounded amount of stack. If that
assumption isincorrect and you can deduce an upper bound of stack usage, then you can
employ the +st ack option to indicate this upper bound. In a series of such movesyou
can convert a set of functions containing recursion to a set of functions with a known
bound on the stack requirements of each function.

(2) recursive --afunctionisdesignated asr ecur si ve if it isrecursive but we do not
provide a specific circular sequence of callsto demonstrate the fact. Thusthe functionis
recursive but unliker ecur si ve | oop functionsit is not demonstrably recursive. The
record contains the name of afunction called. Thisfunction will either ber ecur si ve

| oop, recursiveorcal |l srecursive (seenext category). If you follow the chain of
callsit is guaranteed that you will ultimately arrive at afunction that is labeled
recursive | oop.

(3) call's recursive -- afunction may itself be non-recursive but may call afunction
(directly or indirectly) that is recursive. The stack requirements of functionsin this
category are considered to be unbounded. The record will contain the name of afunction
that it cals. Thisfunctionwill either be’recursive | oop’,’recursive’ or’calls
recursive’. If youfollow the chain of calsit is guaranteed that you will ultimately
arrive at afunction that islabeled 'r ecur si ve | oop’.

(4) non-determ nistic--afunctionissaidtobenon-deterninisticifitcals
through afunction pointer. The presumption is that we cannot determine by static means
the set of functions so called. No functionislabeled non- det er mi ni sti c unlessitis
first determined that it isnot inther ecur si ve categories. That is, it could not be
determined following only deterministic callsthat it could reach ar ecur si ve function.

If you can determine an upper bound for the stack requirements of a non-deterministic
function then, like arecursive function, you may employ the +st ack option to specify
this bound and in a sequence of such options determine an upper bound on the amount of
stack required by the application.

(5) calls a non-determnistic function --afunctionisplaced into this
category if it callsdirectly or indirectly anon- det er mi ni stic function. Itis
guaranteed that we could not find arecursive loop involving this function or even a
deterministic path to arecursive function. The record will be accompanied by the name of
afunction called. It isguaranteed that if you follow the chain of calls you will reach a
non-deterministic function.

(6) finite--afunctionisfiniteif al call chains emanating from the function are
bounded and deterministic. The record will contain atotal stack requirement. Thiswill be
aworst case stack usage. The record will bear the name of afunction called (or "'no
function’ if it does not call afunction). If you follow this chain you will pass through a
(possibly zero length) sequence of finite functions before arriving at a function that

(@) islabeledas’f i ni t e’ but calls no other function or
(b) islabeled as’ext ernal * or
(c) islabeled as explicit (see next category).

You should be able to confirm the stack requirements by adding up the contribution from
each function in the chain plus a fixed call overhead for each call. The amount of call
overhead can be controlled by the st ack option.

For ’ext er nal ’ functions there is an assumed default stack requirement. You may
employ the +st ack option to specify the stack requirement for a specific function or to
alter the default requirement for external functions.

(7) explicit --afunctionislabeled as explicit if there was an option provided to the
- st ack option asto the stack requirements for a specific function.

The information provided by this option can be formatted by the user using the

-f or mat _st ack option. This allows the information to be formatted to a form that
would alow it to be used as input to a database or to a spreadsheet. Thisformat can
contain escape codes

"o6 ’ for the function name,

"o’ for the local auto storage,

o4’ for type (i.e. one of the seven categories above),
"o’ for the total stack requirement

"o’ for the callee and

"o’ for an’ext er nal ’ tag on the callee.

See- f or mat _st ack in Section 5.6.3 Message Format Option for more details. Seeaso
Message 974 in Section 19.6 C Elective Notes.

17. PROGRAM INFORMATION

PC-lint/FlexeLint can glean information about your program and present it in aform suitable for
input into a data base or spreadsheet. Thisinformation can be used for many purposes. For
example, it would be easy to use your favorite scripting language to write a short and smple
program to read this data and then checks for conformance to naming conventions or other style
rules or guidelines.

Thisoption
+program i nfo(output_prefix=Prefix|[, sub-option]...)

instructs Lint to output four text files that reflect some of itsinternal representation of your
program. The information is separated into these four cat egori es.

file
type
synbol
macr o

For each category, Lint will output afile with a corresponding name.

Prefixfile.txt
Prefixtype.txt
Prefix synbol .t xt
Prefix macro. t xt

The data within each file are given by alist of r ecor ds (one per line) composed of f i el ds,
which are the smallest units of representation. Example: in C++ programs, thereisusually a
global function called mei n. It will berepresented asarecord in synbol . t xt . Oneof its data
fieldsindicatesthat it is a function symbol (as opposed to, say, avariable symbol).

[Note: most information is expected to be output during Global Wrap-up time -- that is, after
processing all project modules -- so whenever you make changes to the arguments to this option,
you should first test your configuration against asingle C or C++ source file before using it
against your entire project.]
This option has two forms:

+program_i nfo(opti ons)

-program.i nfo(opti ons)

The second form is used to store away a sequence of options that you would use to display
program information whenever you choose to do so. Presumably the option would be placed in a

. I nt fileto betriggered with asimple +pr ogr am_i nf o on the command line. (See also
Section 17.3.)

A required sub-optionisout put _prefi x=Pref i x. Prefi x may optionally be surrounded by
double-quote characters so as to allow spaces and other non-alphanumeric charactersin
pathnames. Pr ef i x need not indicate a directory; you may specify asimple filename prefix, a
relative path (with or without a filename prefix), or the prefix of an absolute path. If you intend
for Pr ef i x to represent adirectory, it should end with atrailing directory separator character
(eg.’l"). Example:

+program i nfo(output prefix="foo ")

causes Lint to create thefilesfoo _file.txt,foo type.txt,foo_synbol.txt and
foo_nacro.txt. But

+program i nfo(output prefix="foo /")
causes Lint to attempt to createfi | e. t xt,t ype. t xt,synbol . t xt and macr o. t xt withina
directory called f oo_ (which is expected to exist already within the working directory). Pr ef i x
may be an empty string. E.g.:

+program i nfo(output_prefix=)

resultsin an attempt to create output file streamsfor fi | e. t xt , etc., within the working
directory.

Before proceeding, we recommend the reader try producing these files using some variation of
the above options after first making sure that vital files that happen to have identical names will
not be clobbered.

The generated information is organized in away similar to that of arelational database. For
example, for each record in synbol . t xt, thereislocation information in the form of afile and

linenumber. Thefileisgiven by areferenceto exactly onerecordinfil e. t xt. Similarly, the
symbol’ stype isindicated by areference to exactly onerecordint ype. t xt .

17.1 Record Fields

The following sections enumerate the set of fields available within each file.

17.1.1Thefil e category (Prefixfile.txt)

| NDEX An integer that uniquely identifies afile.

NAVE The name of thefile. Theflag option’ ff n’ determines whether an absolute or
relative path nameis used

17.1.2 Thetype category (Pr ef i xt ype. t xt)

I NDEX Aninteger that uniquely identifies atype.
NAVE The name of thetype (eg.,i nt *).

KI ND The kind of type (e.g., "poi nt er). Possible valuesfor thisfield fall into two
groups. There are primitive type kinds:

bool , signed plain_char, unsigned_plain_char, signed char,
unsi gned char, signed wchar _t, unsigned wchar t,

si gned_short, unsigned short, signed int, unsigned int,

si gned_l ong, unsigned | ong, signed | ong |ong,

unsi gned_long | ong, float, double, |ong double, void

and type kinds of more complicated types:

pointer, bit field, array, function, struct, union, enum
reference, pointer_to _nmenber, nenber function, nenber data,
tenpl at e_paraneter, nanmespace, dependent speci ali zati on,
dependent |y _di nensi oned_array, dependent nane

17.1.3Thesynbol category (Prefi xsynbol . t xt)

FI LE A fileindex whichrefersto | NDEXinfi | e. t xt and specifiesthefilein whichthe
symbol is defined (or declared).

LI NE An integer that indicates the line number within the specified file where the
symbol is defined or declared.

Thefirst line of afileisawaysregarded as being line 1 (asis the case in most
text editor programs). A LI NE value of zero indicates the symbol was created in
the absence of adeclaration in asourcefile. (E.g., nanespace st d iscreated
implicitly so that st d: : bad_al | oc and theimplicitly declared allocation and
deallocation operators may be created. So unlessnanespace st d isseen, the
symbol representing that namespace is said to be declared at line zero.

[Note: If the symbol was declared but not defined, then FI LE and LI NE refer to
the location of the first declaration. If the symbol was defined, these fields refer
to the definition.]

NANME The name of the symbol.

LI NKAGE The symbol’slinkage. Possible valuesfor thisfield are:

SCOPE

Kl ND

TYPE

no_| i nkage, internal _|inkage, external _I|inkage
(For authoritative descriptions of these terms, refer to the 1SO standards.)
The symbol’s scope. Possible values for thisfield are:

functi on_scope, class_scope, nanespace_scope, block scope
file_scope

(For authoritative descriptions of these terms, refer to the 1SO standards.)

The kind of symbol. E.g., enumeration constants are said to be of the kind
"enuner at or ". For variables, thisfield indicates storage duration and will have a
value of "aut 0" or "st ati c". Possible valuesfor thisfield are asfollows:

auto, static, function, nenber_function, instance_nenber,
enunmer ator, type, |label, class tenplate, function_tenplate,
nanespace, tenplate_ paraneter, using _declaration

A typeindex which refersto | NDEX int ype. t xt and specifiesthe type of the
symbol.

17.1.4 Thenacr o category (Pref i xmacr o. t xt)

FI LE

LI NE

NANME

A fileindex whichrefersto | NDEXinfi | e. t xt and specifiesthefilein whichthe
macro is defined.

An integer that indicates the line number within the specified file where the
macro’s definition appears. Aswiththerecordsinsynbol . t xt , thefirst line of a
fileisalwaysregarded asbeing line 1. A LI NE value of zero indicates the macro
was created in the absence of adefinition in asourcefile. (E.g., internally-defined
macros and macros defined through a command-line option have a L1 NE value of
zero.)

The name of a preprocessor macro

PARAVETER _COUNT The number of parameters accepted by the macro. In the case of an

object-like macro, this has avalue of 0.

20. WHAT'SNEW

This chapter details the new and improved features of PC-lint/FlexeLint 9.00 over PC-lint/
FlexeLint 8.00. In some rare cases an option was supported in 8.00 but documented only in the
readne. t xt file.

20.1 Major New Features

* Pre-compiled Headers

Pre-compiled headers, as users of C and C++ systems are well aware, can dramatically reduce
the time spent in processing multiple modules. See Section 7.1 " Pre-compiled Headers" .

» Static Variable Tracking

We now incorporate variables of static storage duration in our value tracking. These include not only
variables that are nominally static, aslocal to afunction and local to a module, but also external
variables.

See-static_depth(n) andflag-fsv.
* Thread Analysis

We examine multi-threaded programs for correct mutex locking and report on variables
shared by multiple threads that are used outside of critical sections. See Chapter 12. Multi-
thread Support

» Stack Usage

We can report (Note 974) on the overall stack requirements of any program whose function
calls are non-recursive and deterministic (i.e. calls not made through function pointers). This
isvery useful for embedded systems development where the amount of stack required can be
mission critical. A complete detailed report of stack usage for each function is available as
well (See +st ack() inSection 5.7 Other Options).

 Dimensional Analysis

We now support through the strong type mechanism the classical dimensional analysis that
engineers and physicists have traditionally employed in verifying equations. A 'type’ can
now be aratio or product of other types and the compound types are checked for consistency
across assignment boundaries. See Section 9.4 Multiplication and Division of Strong
Types.

* -deprecate option

The user may deprecate particular symbolsin any of the following categories: f unct i on,
keywor d, macr o andvar i abl e. See- deprecat e.

Message Enhancement and Control

You may now enhance any message parameterized by Synbol so that the symbol’stypeis
also given (See +t ypenane).

You may suppress any message parameterized by Synbol on the basis of the type of the
symbol (See - et ype).

You can suppress messages parameterized by St r i ng on thebasis of that string (See
-estring).

You may activate amessage for a particular Synmbol (or set of symbols) that is otherwise
inhibited (see +esyn).

You may suppress a message while calling a particular function (see - ecal |), while calling
library functions (see - el i bcal |) and while invoking library macros (see- el i bnacr o).

Enhanced MISRA Checking

Continued improvements have been made to our suite of MISRA checks. Theseinclude
detection of recursion, support for the MISRA 2’ underlying type’ concept and determination
of side effects for functions and MISRA C++. Seethe enabling filesau- ni sral. | nt for
MISRA-C:1998, au- mi sra2. | nt for MISRA-C:2004 and au- i sr a- cpp. | nt for
MISRA-C++: 2008.

Source-echo mode

Lint messages can optionally appear embedded within the context of the original source. See
+sour ce(sub- opt i on).

html support

Output can appear in the html format, suitable for a browser and handsomely color coded.
See +ht m (sub- opti on).

Program Info

A comprehensive collection of information about your program is optionally provided
yielding information on files, types, symbols and macros for smple viewing or in a manner
absorbable by a database or spreadsheet. This information can be used for many purposes,
including naming-style conventions. See +pr ogr am i nf o.

Macro Scavenging

This feature turns PC-lint/FlexeLint into a seeker of built-in macros supported by a compiler
and lying about within compiler header files. Thisis perfect for the unknown compiler with

long and forgotten macros ready to trip up athird party processor such as PC-lint/FlexeLint.
See- scavenge.

New semantics

A number of new semantics have been added to the - semoption:

initializer indicatesthe member function can berelied upontoinitialize all the

members

cl eanup indicates that the function is expected to free or zero all pointer members.

i nout (i) indicates that the i th parameter will read as well aswrite to its (indirect)
argument.

pod(i) indicates that the i th argument requires a pointer to aPOD (Plain Old
Datatype).

pure can be used to indicate that the function is a pure function.

A number of new semantic flags support multi-threading analysis: Seet hr ead,
thread_| ock, t hread_unl ock,andt hread_pr ot ect ed and many others.

New Messages

Version 9 has some 146 new messages. Some of the more prominent of these are as follows:

Read-Write Analysis

Ever wonder whether each assigned value to a (local) variable actually has a chance of being
used before another value is assigned to the variable or before exiting the program? We now
detect this condition (See messages438 and 838) .

Appropriate options allow the programmer to customize this check to suit his or her
programming style (See-fi wand-fi z).

f or clause Scrutiny

f or clausesare now subject to intense scrutiny. We complain if the variable tested in the 2nd
expression is not the same asthe variable modified in the third or the variableinitialized in the
first. (Warnings440, 441 and 443). We warn if the testing direction (2nd expression)
seems inconsistent with the increment direction (3rd expression), (Warning 442), or if the
expression tested is inconsistent with the expression incremented (Warning 444) or if the
loop index variable is modified in the body of the loop (Warning 850).

Pre-determined Predicates

We can detect in avariety of circumstances that the value of a predicate is pre-determined to
betrue or false. For example:

unsi gned u;
(u & 0x10) == Ox11

isalwaysfalse (587) or

unsi gned u; .
(u=2)I1=1

has a predictable outcome barring overflow (588), or

int n; ...
(n%2) ==

will always be false making the usual assumptions about integer division (589), or
int n; ...
(5<<n) <0
will not be true unless there is a standards violation (590).

Constants

Constants come under careful examination. Within string or character constants we look for
the psuedo-hex character \ 0x FF (message 693), decimal charactersfollowing an octal escape
sequence (692), or the embedded nul (840). We also look for numeric constants that have
different types depending on language dialect (694).

Expressions

We report on compile-time zero’'s being added, multiplied, ORed, etc. to expressions (835)
and on deducable zero's added, multiplied, etc. (845). Our order-of-evaluation checking has
been extended to include the case of functions modifying objects (864) and the suspicious
looking: p ? a: b = 1 (message1563). Wealso look for non 0/1 assignments to
boolean typed objects (1564). We issue warnings about unusual si zeof arguments (866).
const qualification

We now report on global or static variables that could be made const (843) and global or
static pointers that could be declared as pointing to const (844).

Unusua Declarations

We report on the following declaration
int a:b;

asits meaning is not defined by the standard (846). We also look for assignment operators
that do not return areferencetoaconst ref (1941).

Initializer Functions

A new feature of Version 9 isthe notion of aninitializer. Seetheinitiali zer semantic.
Message 1565 warns when an initializer fails to carry out its mission and messagel 566
points out when an initializer may be needed. There are similar considerations for the

cl eanup semantic.

Include Guards

Headers are examined to determine whether they contain standard i ncl ude guards (451 and
967).

Pointer and Reference Anomalies

New messages that involve the ever dangerous pointer and the innocent appearing reference
areasfollows. We look for

pointersto aut o being assigned to amember of the current cl ass (1414)

pointersto non-POD cl ass being passed to POD-seeking functions such as nentpy (1415)
string constants assigned to initialize non-const char pointers(1778)

an uninitialized reference used to initialize another reference (1416)

areference member not appearing in amem-initializer (1417)

returning the address of areference parameter (1780)

passing the address of a reference parameter into the caller’s address space (1781)

assigning the address of a reference parameter to astatic variable (1782, 1940).

Unreferenced (but constructed) class variables
Ever try to find al those unreferenced Cst r i ng’s? We didn't complain in the past because

technically speaking, they were referenced by their own constructor. Such variables now get a
new Info message (1788) so they can be picked out and eliminated.

20.2 New Error Inhibition Options

See Section 5.2 Error Inhibition Options

-/ +ecal | (#, Namel[, Nanme2 ...]) inhibits (-) or re-enables (+)

error message # based on the name of some function (or some wildcard name pattern) while

acall tofunction Nane 1 (or Nane2, etc.) is being parsed.

-/ +el i bcal | (#[, #]) inhibits(-) or re-enables(+)
the numbered messages while parsing callsto library functions.

-el i bmacro(#) islike-emacro(#, Nane) except that it appliesto al macrosdefined in
library code.

+/ - et ype(#, Nanel[, Nane2,...]) enables (+) or suppresses (-)
messages numerically equal to or matching # which are parameterized by at least one
symbol whose type isidentical to or which matches one of Nanel, Nane2, ...

+efreeze inhibits subsequent error suppression options
-efreeze reversesthe effect of +ef reeze
++ef reeze locksin freezing permanently

-/ +efreeze(w# [, w# ...]) Behaveslike-/ +ef r eeze, but acts only on messagesin the
given warning level(s).

+esynm(#, nane) canbeusedtooverridea- e# just asa- esymcan override a+e#.
-/ +estring(#, Stringl[, String2,..]) inhibits(-) or re-enables (+)

messages based on strings used as Lint message parameters such as Cont ext , Ki nd,
Location,String, Type,and TypeDiff.

20.3 New Verbosity Options

See Section 5.4 Verbosity Options
-va... will cause amessage to be printed each time there is an Attempt to open afile.

- ve... will cause amessage to be printed each time atemplate function is instantiated.

20.4 New Flag Options

See Section 5.5 Flag Options

f @n commercia @isaModifier flag

fat Parse.net ATtributesflag

fda Double-quotesto Angle brackets flag
fdd Dimension by Default flag

fdh dot-h flag - Enhanced

fet Explicit Throw flag

ffc Function takes Custody flag

fii Inhibit Inferenceflag

fiw Initialization-is-considered-a-Write flag
fiz Initialization-by-Zero-is-considered-a-Write flag
fj m JM controlsthe Multiplier group flag

fld Label Designator flag

fnc Macro Concatenation Flag

fns Nested Struct flag

fnr Null-can-be-Returned flag

fpd Pointer-sizes Differ flag

fgb Qualifiers-Before-typesflag

frn treat carriage Return as Newline

fsg StdisGlobal flag

fsn Strings as Names flag

fsv track Static Variableflag

fus Using namespace Std flag

fvl Variable Length array flag

fwm wprintf formatting follows Microsoft flag

20.5 New Message Presentation Options

See Section 5.6.1 Message Height Options
- hS... will force aline skip in both places.

- he... placesthe source line (and the indicator and the macro expansion) at the end of the
message.

See Section 5.6.3 Message Format Option

-format _stack=... controlsthe detailed formatting of the output produced by
+stack.

-format _t enpl at e=... controlsthe detailed formatting of a prologue to any message that is
issued while instantiating a class templ ate.

-format _ver bosi t y=... controlsthe detailed formatting of the verbosity output when the

+ht ml optionisused. Itsprimary purposeisto alow the user to add font information to
the verbosity.

20.6 Additional Other Options

See Section 5.7 Other Options

- A(Language Year) Thisoption alows you to specify the version you are using with the - A
option.

-al i gn_max(option) Thisoption (patterned after the Microsoft pr agna packed) alowsthe
programmer to temporarily set the maximum alignment of any data object.

++b Use++b to placethe banner lineonto- os(fil e)

+/-conpiler(flagl[,flag2 ..]) Thisoption alows the programmer to specify flags that
describe compiler-specific behavior.

-deprecat e(cat egory, nane, comment ary) deprecatesuseof a nane. You may indicate
that a particular name is not to be employed in your programs.

-dname{defini ti on} Thisisanadternativeto- dnanme=defi nition. -dname{definition}
has the advantage that blanks may be embedded in the definition.

+ht nl (sub-option,..) isusedwhen theoutput isto beread by an HTML browser.

-indirect(options-file [,.] alowsyouto specify Lintoption filesto be processed
when this option is encountered.

++limt(n) Thisisavariationof -1i nmt(n). Itlocksin thelimit making it impossible to
reverse by a subsequent limit option.

+l i bm(nodul e-name[,..] alowsyou to specify modulesto be treated as library files.

-mexfiles(n) A presetlimit onthe maximum number of filesis approximately 6,400. This
[imit can be changed by specifying a new limit with the - maxf i | es option.

-message(text) will allow the user to issue aspecia Lint message that will print 't ext ' only
at the time that this option is encountered.

-restore can beused onthe command line or withina". | nt " file.

-restore_at _end using thisoption has the effect of surrounding each source filename
argument with - save and - r est or e.

-save can beused on the command line or withina". | nt " file.

-scavenge(fil enane-pattern[,..]| clean, filenane)
this option automatically finds compilers’ built-in macros. It completely changesthe
character of Lint from static analyzer to a scavenger of macros (or cleanup facility
depending on the sub option).

-setenv(directive) willalow theuserto set an environment string.

+source(sub-option,.) will causeall sourcelinesof afileor filesto be echoed to the
output stream.

-sour ce(sub-option,.) will enablethe user to specify sub-options without triggering the
echoing.

+stack(sub-option,.) The+stack option can be used to generate areport on cumulative
stack requirements.

-static_depth(n) adjuststhe depth of static variable analysis.

-strong(fl ags, nane, ...) canbeused to specify the nane of one of the built-in types:
bool , char, si gned char, unsi gned char,wchar _t,short,unsi gned short,
i nt,unsigned int,|long,unsigned |ong,longlong,unsigned | ong | ong,
fl oat,doubl e,l ong doubl e, voi d.

-subfile(indirect-file,options|nodul es)
Thisisan unusual option and is meant for front-ends trying to achieve some special effect.

-sunmary causes asummary of all issued messages to be output after global wrap-up
processing.

-tr_limt(n) alowstheuserto specify atemplate recursion limit.

+t ypename(#[, # ...]) Foreach message equal to or matching #, +t ypename(#) will
cause PC-lint/FlexeLint to add type information for any and all symbol parameterscitedin

the message.

+xm (nane) By adroit use of the- f or nat option you may format output messagesin xm .
This option hastwo purposes. Special xm characters (' <', >'and '&' at thiswriting) will
be escaped (to"&l t ; ", "> ; " and "&anp; " respectively) when they appear in the
variable portion of the format. Secondly, if nanme isnot null, the entire output will be
bracketed with <nane> ... </ name>. If nane isnull this bracketing will not appear.

20.7 Compiler Adaptation

See Section 11.1.1 Special Functions

___assert Inadditiontothe assert () function (two underscores) there is now the
___assert () function (three underscores). Thelatter differs from the former in that it
aways returns.

See Section 5.8.12 Additional Keywords

__packed Astruct (orcl ass) may bedeclaredas__ packed (two leading underscores) to

indicate that alignment isignored when allocating space for datamembersof thest r uct .

See Section 5.8.3 Customization Facilities

__typeof __ issmilarinspirittosi zeof except it returnsthe type of its expression rather than

itssize.

_up_to_brackets isapotentia reserved word that will cause it and all tokens up to and

including the next bracketed expression to be ignored.

20.8 New M essages

See Section 19.1 C Syntax Errors

95

98

109
120
121
143
158
159
160

161

Expected a nacro paraneter but instead found ' Nane'

Recovery Error (String)

The conbination 'short long’” is not standard, 'long’ is assuned
Initialization w thout braces of datal ess type ' Synbol’
Attenpting to initialize an object of undefined type ' Synbol’

Er roneous option: String

Assignnment to variable *Synbol’ (Location) increases capability
enum following a type is non-standard

The sequence ' ({’ is non standard and is taken to introduce a GNU
st at ement expression

Repeated use of paraneter ' Synmbol’ in parameter |ist

See Section 19.3 Fatal Errors

317
327
328

File encoding, String, not currently supported; unable to continue
Bad pi pe, code Integer

Bypass header 'Nane' follows a different header sequence than in
nmodul e " String' which includes Filel where the current nodul e

i ncl udes File2

See Section 19.4 C Warning Messages

431
438
440
441

442

M ssing identifier for tenplate paraneter nunber |nteger

Last val ue assigned to variable 'Synbol' not used

for clause irregularity: variable 'Synbol' tested in 2nd
expressi on does not match ' Synbol® nodified in 3rd

for clause irregularity: |loop variable 'Synmbol' not found in 2nd
for expression

for clause irregularity: testing direction inconsistent with
increnent direction

443
444
445
447
448
451
453
454

455
456

457

458

459

460

461

462
464
522
583
585
586
587
588
589
590
591

592
593

687

for clause irregularity: variable 'Synmbol' initialized in 1st
expressi on does not match ' Synbol' nodified in 3rd

for clause irregularity: pointer 'Synbol' increnmented in 3rd
expression is tested for NULL in 2nd expression

reuse of for loop variable 'Synbol' at 'Location'" could cause
chaos

Extraneous whitespace ignored in include directive for file

"Fil eName’; opening file ' FileNane’

Li kel y access of pointer pointing Integer bytes past nul character
by operator 'String'

Header file 'FileNanme' repeatedly included but does not have a
standard incl ude guard

Function ' Synbol’, previously designated pure, String ' Nane

A thread nutex has been | ocked but not unl ocked

A thread nutex that had not been | ocked is being unlocked

Two execution paths are being conbined with different nmutex | ock
states

Thread * Synmbol 1’ has an unprotected wite access to variable

" Symbol 2" which is used by thread ’'Synbol 3’

Thread ' Synbol 1’ has an unprotected read access to variable
"Symbol 2° which is nodified by thread ' Synbol 3’

Functi on’ Synbol ' whose addr ess was t aken has an unpr ot ect ed access to
vari abl e ' Synbol

Thread * Synmbol’ has unprotected call to thread unsafe function
"Symbol’ which is also called by thread ' Synbol

Thread ' Synbol’ has unprotected call to function 'Synbol’ of group
"Nanme’ while thread ' Synbol’ calls function 'Synbol’ of the sane
gr oup

Thread ’ Synbol ' calling function ' Synbol’ is inconsistent with the
"String’ semantic

Buf fer argunent will be copied into itself

H ghest operator or function | acks side-effects

Comparing type ' Type’ with EOF

The sequence (??Char) is not a valid Trigraph sequence

String 'Nane' is deprecated. String

Predicate "String’ can be pre-determ ned and al ways eval uates to
String

Predicate "String’ will always evaluate to String unless an
overfl ow occurs

Predicate "String’ will always evaluate to String assum ng
standard di vi sion semantics

Predicate "String’ will always evaluate to String assum ng

standard shift semantics

Vari abl e ' Synbol’ depends on the order of evaluation; it is used/
nodi fi ed through function ’'Synbol’ via calls: String

Non-literal format specifier used w thout argunents

Cust odi al pointer 'Synmbol’' (Location) possibly not freed or
returned

Suspi ci ous use of conma oper at or

688
689
690
691
692
693
694
695
696

697
698

Cast used within a preprocessor conditional statenent

Apparent end of conment ignored

Possi bl e access of pointer pointing |Integer bytes past nul
character by operator ’'String’

Suspi ci ous use of backsl ash

Deci mal character ' Char’ follows octal escape sequence 'String’
Hexadecimal digit 'Char’ inmmediately after "String is suspicious
in string literal.

The type of constant 'String (precision Integer) is dialect
dependent

Inline function ' Synbol’' defined wi thout a storage-class specifier
("static' recommended)

Vari able ' Synbol’ has value ’String that is out of range for
operator ' String

Quasi - bool ean val ues shoul d be equality-conpared only with O
Casual use of realloc can create a nmenory | eak

See Section 19.5 C Informational Messages

705 argunent no. Integer nomnally inconsistent with fornmat

706 (argunent no. Integer) indirect object inconsistent with format

707 M xing narrow and wide string literals in concatenation

835 A zero has been given as [left/right] argunent to operator ’Nane’

836 Conceivabl e access of pointer pointing |Integer bytes past nu
character by operator 'String

838 Previously assigned value to variable 'Synbol’ has not been used

839 Storage class of synbol ’'Synbol' assuned static (Location)

840 Use of nul character in a string litera

843 Variable 'Synmbol’ (Location) could be declared as const

844 Pointer variable 'Synmbol’ (Location) could be declared as pointing
to const

845 The [left/right] argument to operator 'Nane' is certain to be O

846 Signedness of bit-field is inplenmentation defined

847 Thread ' Synbol’ has unprotected call to thread unsafe function
" Synbol’

849 Synbol ' Synbol’ has same enunerator value 'String as enunerator
'’ Synbol ’

850 for loop index variable ’Synbol’ whose type category is 'String
nodi fied in body of the for |oop

864 Expression involving variable 'Synbol’ possibly depends on order
of eval uation

866 Unusual use of 'String’ in argunent to sizeof

See Section 19.6 C Elective Notes

904 Return statenent before end of function ’Synbol’

905 Non-literal format specifier used (with argunents)

948 (Qperator 'String always evaluates to [True/ Fal se]

962
963

967
974
975

Macro ' Synbol’ defined identically at another | ocation (Location)
Qualifier const or volatile foll ows/precedes a type; use -fqgb/+fgb
to reverse the test

Header file 'FileNanme' does not have a standard include guard
Wrst case function for stack usage: String

Unrecogni zed pragma ' Nane’ will be ignored

See Section 19.7 C++ Syntax Errors

1020

1081
1082
1086
1087

1088
1089
1090
1091
1092

1093

1094

1095

tenpl ate specialization for 'Synbol' declared without a

"tenpl ate<>" prefix

bj ect paraneter does not contain the address of a variable

bj ect paraneter for a reference type should be an external synbol
Compound literals may only be used in C99 prograns

Previous declaration of 'Nanme' (Location) is inconpatible with
"Name’ (Location) which was introduced by the current using-
decl aration

A using-decl arati on nust nanme a qualified-id

A using-decl arati on nust not nanme a nanespace

A using-decl aration nmust not name a tenplate-id

"Narme’ is not a base class of 'Nane’

A using-decl aration that names a class nenber nust be a nmenber-
decl aration

A pure specifier was given for function 'Synmbol’ which was not
decl ared virtual

Could not find ") or ',’ to termnate default function argunent
at Location

Ef fective type ' Type' of non-type tenplate paraneter #l nteger
(corresponding to argunent expression 'String’) depends on an
unspeci al i zed parameter of this partial specialization

See Section 19.9 C++ Warning M essages

1405
1414
1415

1416

1417

1558
1562

1563
1564
1565

Header <typei nfo> nust be included before typeid is used

Assi gning address of auto variable 'Synbol’ to nenber of this
Poi nter to non-POD cl ass ' Nane’ passed to function 'Synbol’
(Cont ext)

An uninitialized reference 'Synbol’ is being used to initialize
reference ' Synbol’

reference nmenmber ' Synmbol’ not initialized by constructor
initializer list

"virtual’ coupled with "inline’ is an unusual combi nation
Exception specification for 'Synbol’ is not a subset of 'Synbol’
(Location)

Suspicious third argunent to ?: operator

Assi gning a non-zero-one constant to a bool

menber ' Synbol’ (Location) not assigned by initializer function

1566

1567

1568

1569
1570

1571
1572

1573

1576

1577

1578

1579

menber ' Synbol’ (Location) m ght have been initialized by a
separate function but no '-sem(Nane,initializer)’ was seen
Initialization of variable ' Synbol’ (Location) is indeterni nate as
it uses variable ’Synmbol’ through calls: *"String’

Vari abl e ' Synbol’ (Location) accesses variable ' Synbol’ before the
latter is initialized through calls: 'String’

Initializing a reference with a tenporary

Initializing a reference class nmenber with an auto variabl e

’ Synbol”’

Returning an auto variable ’'Synbol’ via a reference type
Initializing a static reference variable with an auto vari able

'’ Synbol’

Generic function tenplate ' Synbol’ declared i n nanespace
associated with type ' Synmbol’ (Location)

Speci alization of tenplate ' Synbol’ not declared in same file as
primary tenplate

Partial or explicit specialization does not occur in the sanme file
as primary tenplate ' Synbol’ (Location)

Poi nter member ' Synbol’ (Location) neither freed nor zeroed by

cl eanup function

Poi nter menmber ' Synbol’' (Location) m ght have been freed by a
separate function but no ’-sem Nane, cl eanup)’ was seen

See Section 19.10 C++ Informational M essages

1713
1777
1778

1780
1781

1782

1784
1785
1786
1787
1788

1789
1790
1791
1793

1794

Par ent heses have inconsistent interpretation

Tenplate recursion limt (lInteger) reached, use -tr_linmt(n)

Assi gnment of string literal to variable 'Synbol’ (Location) is
not const safe

Returni ng address of reference paraneter ' Symbol’

Passi ng address of reference paraneter 'Synbol’ into caller

addr ess space

Assi gning address of reference paraneter 'Synbol’ to a static
vari abl e

Symbol ' Synbol’ previously declared as "C', conpare with Location
Inplicit conversion from Boolean (Context) (Type to Type)
Implicit conversion to Boolean (Context) (Type to Type)

Access decl arations are deprecated in favor of using declarations
Vari able ' Synmbol’ (Location) (type 'Nane') is referenced only by
its constructor or destructor

Tenpl ate constructor 'Synbol' cannot be a copy constructor

Base class 'Synbol’ has no non-destructor virtual functions

No token on this line follows the 'return' keyword

VWhile calling *Synbol’: Initializing the inplicit object paranmeter
"Type' (a non-const reference) with a non-Ival ue

Usi ng-decl aration introduces 'Nanme’' (Location), which has the sane
parameter |list as 'Nanme' (Location), which was al so introduced
here by previous using-declaration 'Name' (Location)

1795
1796
1917
1940

1941

1942

1960
1963

Defi ned tenplate ' Synbol’ was not instantiated

Explicit specialization of overloaded function tenplate *Synmbol’
Enpty prototype for String, assunmed ' (void)

Address of reference paranmeter 'Synbol’ transferred outside of
functi on

Assi gnment operator for class ’Synmbol’ does not return a const
reference to cl ass

Unqual i fied name ' Synmbol’ subject to misinterpretation owing to
dependent base cl ass

Vi ol ates M SRA C++ Required Rule Nane, String
Vi ol ates M SRA C++ Required Rule Nane, String

	5. OPTIONS
	5.8.3 Customization Facilities

	7. FAST HEADER PROCESSING
	7.1 Pre-compiled Headers
	7.1.1 Introduction to pre-compiled headers
	7.1.2 Designating the pre-compiled header

	9. STRONG TYPES
	9.2 What are Strong Types?
	9.4 Multiplication and Division of Strong Types
	9.4.1 Dimension (Jd)

	10. VALUE TRACKING
	10.2 Value Tracking
	10.2.2 Interfunction Value Tracking

	11. SEMANTICS
	11.2 Semantic Specifications (-sem)
	11.2.1 Possible Semantics

	12. MULTI-THREAD SUPPORT
	12.1 Overview
	12.2 Identifying Threads
	12.3 Mutual Exclusion
	12.4 Thread-Protected (TP) Regions
	12.5 Constructor-triggered mutex locking
	12.6 Function Pointers
	12.7 Thread Unfriendly Functions
	12.7.1 Thread Unsafe Functions (Category 1)
	12.7.2 Category 2 Functions
	12.7.3 Category 3 Functions
	12.7.4 Header Options
	12.7.5 Directory Options
	12.7.6 Thread Unsafe Classifications
	12.7.7 Priorities in Thread Unsafety
	12.7.8 Category 4 Functions
	12.7.9 Category 5 Functions
	12.8 Thread Local Storage
	12.8.1 __thread
	12.8.2 __declspec(thread)
	12.9 Atomic Access
	12.9.1 Atomic Operations
	12.9.2 Atomic Types
	12.10 Declarative Methods

	13. OTHER FEATURES
	13.12 MISRA Standards Checking
	13.13 Stack Usage Report

	17. PROGRAM INFORMATION
	17.1.1 The file category (Prefixfile.txt)
	17.1.2 The type category (Prefixtype.txt)
	17.1.3 The symbol category (Prefixsymbol.txt)
	17.1.4 The macro category (Prefixmacro.txt)

	20. WHAT'S NEW
	20.1 Major New Features
	20.2 New Error Inhibition Options
	20.3 New Verbosity Options
	20.4 New Flag Options
	20.5 New Message Presentation Options
	20.6 Additional Other Options
	20.7 Compiler Adaptation
	20.8 New Messages

